150 research outputs found
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
A Study of D0 --> K0(S) K0(S) X Decay Channels
Using data from the FOCUS experiment (FNAL-E831), we report on the decay of
mesons into final states containing more than one . We present
evidence for two Cabibbo favored decay modes, and
, and measure their combined branching fraction
relative to to be = 0.0106
0.0019 0.0010. Further, we report new measurements of
=
0.0179 0.0027 0.0026, = 0.0144 0.0032 0.0016,
and = 0.0208 0.0035 0.0021 where the first error is
statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte
Measurement of the D+ and Ds+ decays into K+K-K+
We present the first clear observation of the doubly Cabibbo suppressed decay D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay Ds+ --> K-K+K+. These signals have been obtained by analyzing the high statistics sample of photoproduced charm particles of the FOCUS(E831) experiment at Fermilab. We measure the following relative branching ratios: Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/- 0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) = (8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3
Opposite-side flavour tagging of B mesons at the LHCb experiment
The calibration and performance of the oppositeside
flavour tagging algorithms used for the measurements
of time-dependent asymmetries at the LHCb experiment
are described. The algorithms have been developed using
simulated events and optimized and calibrated with
B
+ →J/ψK
+, B0 →J/ψK
∗0 and B0 →D
∗−
μ
+
νμ decay
modes with 0.37 fb−1 of data collected in pp collisions
at
√
s = 7 TeV during the 2011 physics run. The oppositeside
tagging power is determined in the B
+ → J/ψK
+
channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty
is statistical and the second is systematic
Strong constraints on the rare decays Bs -> mu+ mu- and B0 -> mu+ mu-
A search for Bs -> mu+ mu- and B0 -> mu+ mu- decays is performed using 1.0
fb^-1 of pp collision data collected at \sqrt{s}=7 TeV with the LHCb experiment
at the Large Hadron Collider. For both decays the number of observed events is
consistent with expectation from background and Standard Model signal
predictions. Upper limits on the branching fractions are determined to be BR(Bs
-> mu+ mu-) mu+ mu-) < 1.0 (0.81) x 10^-9 at
95% (90%) confidence level.Comment: 2+6 pages; 4 figures; Accepted for publication in Physical Review
Letter
Determination of the X(3872) meson quantum numbers
The quantum numbers of the X(3872) meson are determined to be JPC=1++ based on angular correlations in B+→X(3872)K+ decays, where X(3872)→π+π-J/ψ and J/ψ→μ+μ-. The data correspond to 1.0 fb-1 of pp collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements JPC=2-+ is rejected with a confidence level equivalent to more than 8 Gaussian standard deviations using a likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the X(3872) stat
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
First evidence of direct CP violation in charmless two-body decays of Bs0 mesons
Using a data sample corresponding to an integrated luminosity of 0.35 fb(-1) collected by LHCb in 2011, we report the first evidence of CP violation in the decays of B-s(0) mesons to K-+/-pi(-/+)pairs, A(CP)(B-s(0) -> K pi) = 0.27 +/- 0.08(stat) +/- 0.02(syst), with a significance of 3.3 sigma. Furthermore, we report the most precise measurement of CP violation in the decays of B-0 mesons to K-+/-pi(-/+) pairs, A(CP)(B-0 -> K pi) = -0.088 +/- 0.011(stat) +/- 0.008(syst), with a significance exceeding 6 sigma. RI Galli, Domenico/A-1606-2012; Coca, Cornelia/B-6015-2012; Petrolini, Alessandro/H-3782-2011; Sarti, Alessio/I-2833-2012; Carbone, Angelo/C-8289-2012; manca, giulia/I-9264-2012; de Paula, Leandro/I-9278-2012; Patrignani, Claudia/C-5223-2009; Marconi, Umberto/J-2263-2012; de Simone, Patrizia/J-3549-2012; Cardini, Alessandro/J-5736-2012; Teodorescu, Eliza/K-3044-201
- …
