441 research outputs found

    Metal-Free ALS Variants of Dimeric Human Cu,Zn-Superoxide Dismutase Have Enhanced Populations of Monomeric Species

    Get PDF
    Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals

    A High Throughput Screen Identifies Chemical Modulators of the Laminin-Induced Clustering of Dystroglycan and Aquaporin-4 in Primary Astrocytes

    Get PDF
    Background: Aquaporin-4 (AQP4) constitutes the principal water channel in the brain and is clusteredat the perivascular astrocyte endfeet. This specific distribution of AQP4 plays a major role in maintaining water homeostasis in the brain. A growing body of evidence points to a role ofthe dystroglycan complex and its interaction with perivascular laminin in the clusteringof AQP4 atperivascular astrocyte endfeet. Indeed, mice lacking components of this complex or in which laminindystroglycan interaction is disrupted show a delayed onset of brain edema due to a redistribution of AQP4 away from astrocyte endfeet. It is therefore important to identify inhibitory drugs of laminin-dependent AQP4 clustering which may prevent or reduce brain edema. Methodolgy/Principal Findings: In the present study we used primary rat astrocyte cultures toscreen a library of.3,500 chemicals and identified 6 drugs that inhibit the laminin-induced clustering of dystroglycan and AQP4. Detailed analysis of the inhibitory drug, chloranil, revealed that its inhibition of the clustering is due to the metalloproteinase-2-mediated ß-dystroglycan shedding and subsequent loss of laminin interaction with dystroglycan. Furthermore, chemical variants of chloranil induced a similar effect on ß-dystroglycan and this was prevented by the antioxidant N-acetylcysteine. Conclusion/Significance: These findings reveal the mechanism of action of chloranil in preventing the laminin-induced clustering of dystroglycan and AQP4 and validate the use of high-throughput screening as a tool to identify drugs tha

    X-Ray Phase-Contrast Tomography of Renal Ischemia-Reperfusion Damage

    Get PDF
    Purpose: The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation. Material and Methods: The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI) of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV). To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 mu m. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed. Results: GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94). Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders. Conclusion: In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney

    Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    Get PDF
    is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. lineage. genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates

    Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore