472 research outputs found
Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells
Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50concentration of hierridin B (100.2 μM) for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA) provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function.This research was partially supported by FCT—Foundation for Science and Technology under the project UID/Multi/04423/2013 and by the Structured Program of R & D & I INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Program (NORTE2020) through the European Regional Development Fund (ERDF). Ralph Urbatzka was supported by the FCT scholarship SFRH/BPD/112287/2015, and Pedro N. Leão by FCT grant IF/01358/2014
Bartolosides E-K from a Marine coccoid cyanobacterium
The glycosylated and halogenated dialkylresorcinol (DAR) compounds bartolosides A-D (1-4) were recently discovered from marine cyanobacteria and represent a novel family of glycolipids, encoded by the brt biosynthetic gene cluster. Here, we report the isolation and NMR- and MS-based structure elucidation of monoglycosylated bartolosides E-K (5-11), obtained from Synechocystis salina LEGE 06099, a strain closely related to the cyanobacterium that produces the diglycosylated 2-4. In addition, a genome region containing orthologues of brt genes was identified in this cyanobacterium. Interestingly, the major bartoloside in S. salina LEGE 06099 was 1 (above 0.5% dry wt), originally isolated from the phylogenetically distant filamentous cyanobacterium Nodosilinea sp. LEGE 06102. Compounds 5-11 are analogues of 1, with different alkyl chain lengths or halogenation patterns. Their structures and the organization of the brt genes suggest that the DAR-forming ketosynthase BrtD can generate structural diversity by accepting fatty acyl-derived substrates of varying length. Compound 9 features a rare midchain gem-dichloro moiety, indicating that the putative halogenase BrtJ is able to act twice on the same midchain carbon. © 2016 The American Chemical Society and American Society of Pharmacognosy.We would like to thank CEMUP for NMR and HRMS analyses, I. Dias, A. Kijoa, and S. Buttachon for optical rotation measurements, and B. Jarrais for IR measurements. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through grants PTDC/MAR-BIO/2818/2012 and IF/01358/2014 to P.N.L. and partially by project NOVELMAR (NORTE-01-0145-FEDER-000035) supported by the NORTE2020 Program and the European Regional Development Fund
Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Araruama, Brazil: An in-depth polyphasic study
Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity. © 2017 Ramos, Castelo-Branco, Leão, Martins, Carvalhal-Gomes, Sobrinho da Silva, Mendonça Filho and Vasconcelos.This work was supported by the Biogeochemical Project
(AMPETRO 14777—Cooperation term 0050.0023165.06.4)
of the GSE (Sedimentology Management) Network of
PETROBRAS, by the Brazilian National Research Agency—
CNPq and by the Research Agency of Rio de Janeiro
State—FAPERJ. It was also funded by Portuguese National
Funds through FCT—Fundação para a Ciência e a Tecnologia,
grants SFRH/BD/80153/2011 to VR, IF/01358/2014 to PL,
and UID/Multi/04423/2013 and by the Structured Program of
R&D&I INNOVMAR—Innovation and Sustainability in the
Management and Exploitation of Marine Resources (reference
NORTE-01-0145-FEDER-000035, Research Line NOVELMAR),
funded by the Northern Regional Operational Program
(NORTE2020) through the European Regional Development
Fund (ERDF)
BAs and boride III-V alloys
Boron arsenide, the typically-ignored member of the III-V arsenide series
BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma
conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an
X_1c-like indirect band gap, and its bond charge is distributed almost equally
on the two atoms in the unit cell, exhibiting nearly perfect covalency. The
reasons for these are tracked down to the anomalously low atomic p orbital
energy in the boron and to the unusually strong s-s repulsion in BAs relative
to most other III-V compounds. We find unexpected valence band offsets of BAs
with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is
significantly higher than that of AlAs, despite the much smaller bond length of
BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects
result from the unusually strong mixing of the cation and anion states at the
VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and
composition-independent band gap bowing. This means that while addition of
small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of
boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the
conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing
enthalpies which are smaller than in GaN-GaAs alloys. The unique features of
boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for
publication in Phys. Rev. B. Scheduled to appear Oct. 15 200
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits
The WWgamma triple gauge boson coupling parameters are studied using p-pbar
-> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were
collected with the DO detector from an integrated luminosity of 162 pb^{-1}
delivered by the Fermilab Tevatron Collider. The cross section times branching
fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV
and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum)
pb. The one-dimensional 95% confidence level limits on anomalous couplings are
-0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for a narrow scalar or vector resonance decaying into
Zgamma with a subsequent Z decay into a pair of electrons or muons. The data
for this search were collected with the D0 detector at the Fermilab Tevatron
ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0)
fb-1 of data, we observe 49 (50) candidate events in the electron (muon)
channel, in good agreement with the standard model prediction. From the
combination of both channels, we derive 95% C.L. upper limits on the cross
section times branching fraction (sigma x B) into Zgamma. These limits range
from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5
(3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.
- …