848 research outputs found
The role of simulation in designing for universal access
It is known that the adoption of user-centred design processes can lead to more universally accessible products and services. However, the most frequently cited approach to user-centred design, i.e. participatory design, can be both problematic and expensive to implement., particularly over the difficulty of finding and recruiting suitable participants. Simulation aids offer a potentially cost-effective replacement or complement to participatory design. This paper examines a number of the issues associated with the use of simulation aids when designing for Universal Access. It concludes that simulation aids can play an effective role, but need to be used with due consideration over what insights they provide
Attentional Biases and Their Association with Substance-Use-Related Problems and Addictive Behaviors: The Utility of a Gamified Value-Modulated Attentional Capture Task
BackgroundAttentional biases towards reward stimuli have been implicated in substance use-related problems. The value-modulated attentional capture (VMAC) task assesses such reward-related biases. The VMAC task widely used in lab studies tends to be monotonous and susceptible to low effort. We therefore tested a gamified online version of the VMAC that aimed to increase participant engagement. Our goal was to examine how VMAC is associated with substance use-related problems and addictive behaviors, and whether this association is moderated by cognitive control.MethodsWe recruited 285 participants from an online community, including heavy alcohol users. All participants completed a novel gamified version of the VMAC task, measures of substance use and addictive behaviors (addictive-like eating behavior, problematic smartphone use), the WebExec measure of problems with executive functions, and the Stroop Adaptive Deadline Task (SDL) as a measure of cognitive control.ResultsThe gamified VMAC task successfully identified value-modulated attentional capture effects towards high-reward stimuli. We found no significant associations between VMAC scores, problematic alcohol or cannabis use, addictive behaviors, or any moderation by a behavioral measure of cognitive control. Exploratory analyses revealed that self-reported cognitive problems were associated with more alcohol-, and cannabis-related problems, and addictive behaviors. Greater attentional capture (VMAC) was associated with more cannabis use-related problems among individuals with higher levels of self-reported cognitive problems.ConclusionsOur study is one of the first to demonstrate the utility of the gamified version of the VMAC task in capturing attentional reward biases. Self-reported problems with cognitive functions represent a key dimension associated with substance use-related problems and addictive behaviors
Gauge Formulation for Higher Order Gravity
This work is an application of the second order gauge theory for the Lorentz
group, where a description of the gravitational interaction is obtained which
includes derivatives of the curvature. We analyze the form of the second field
strenght, , in terms of geometrical variables. All possible
independent Lagrangians constructed with quadratic contractions of and
quadratic contractions of are analyzed. The equations of motion for a
particular Lagrangian, which is analogous to Podolsky's term of his Generalized
Electrodynamics, are calculated. The static isotropic solution in the linear
approximation was found, exhibiting the regular Newtonian behaviour at short
distances as well as a meso-large distance modification.Comment: Published versio
Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution
We compare and contrast the long-time dynamical properties of two
individual-based models of biological coevolution. Selection occurs via
multispecies, stochastic population dynamics with reproduction probabilities
that depend nonlinearly on the population densities of all species resident in
the community. New species are introduced through mutation. Both models are
amenable to exact linear stability analysis, and we compare the analytic
results with large-scale kinetic Monte Carlo simulations, obtaining the
population size as a function of an average interspecies interaction strength.
Over time, the models self-optimize through mutation and selection to
approximately maximize a community fitness function, subject only to
constraints internal to the particular model. If the interspecies interactions
are randomly distributed on an interval including positive values, the system
evolves toward self-sustaining, mutualistic communities. In contrast, for the
predator-prey case the matrix of interactions is antisymmetric, and a nonzero
population size must be sustained by an external resource. Time series of the
diversity and population size for both models show approximate 1/f noise and
power-law distributions for the lifetimes of communities and species. For the
mutualistic model, these two lifetime distributions have the same exponent,
while their exponents are different for the predator-prey model. The difference
is probably due to greater resilience toward mass extinctions in the food-web
like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J.
Math. Biol., in pres
Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric
In case of spacetimes with single horizon, there exist several
well-established procedures for relating the surface gravity of the horizon to
a thermodynamic temperature. Such procedures, however, cannot be extended in a
straightforward manner when a spacetime has multiple horizons. In particular,
it is not clear whether there exists a notion of global temperature
characterizing the multi-horizon spacetimes. We examine the conditions under
which a global temperature can exist for a spacetime with two horizons using
the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically
extend different procedures (like the expectation value of stress tensor,
response of particle detectors, periodicity in the Euclidean time etc.) for
identifying a temperature in the case of spacetimes with single horizon to the
SDS spacetime. This analysis is facilitated by using a global coordinate chart
which covers the entire SDS manifold. We find that all the procedures lead to a
consistent picture characterized by the following features: (a) In general, SDS
spacetime behaves like a non-equilibrium system characterized by two
temperatures. (b) It is not possible to associate a global temperature with SDS
spacetime except when the ratio of the two surface gravities is rational (c)
Even when the ratio of the two surface gravities is rational, the thermal
nature depends on the coordinate chart used. There exists a global coordinate
chart in which there is global equilibrium temperature while there exist other
charts in which SDS behaves as though it has two different temperatures. The
coordinate dependence of the thermal nature is reminiscent of the flat
spacetime in Minkowski and Rindler coordinate charts. The implications are
discussed.Comment: 12 page
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales
This contribution presents a two-scale formulation devised to simulate failure in materials with het- erogeneous micro-structure. The mechanical model accounts for the activation of cohesive cracks in the micro-scale domain. The evolution/propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is activated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place in the smaller length scale.The two-scale model is based on the concept of Representative Volume Element (RVE). It is designed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire two-scale theory, namely: (i) a mechanism for transferring kinematical information from macro- to-micro scale along with the concept of “Kinematical Admissibility”, relating both primal descriptions, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors and could be viewed as an application of a general framework recently proposed by the authors. The main novelty in this article lies on the fact that failure modes in the micro-structure now involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Tortuosity is a topic of decisive importance in the modelling of material degradation due to crack propagation. Following the present multiscale modelling approach, the tortuosity effect is introduced in order to satisfy the “Kinematical Admissibility” concept, when the macro-scale kinematics is transferred into the micro-scale domain. There- fore, it has a direct consequence in the homogenized mechanical response, in the sense that the proposed scale transition method (including the tortuosity effect) retrieves the correct post-critical response.Coupled (macro-micro) numerical examples are presented showing the potentialities of the model to sim- ulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented
- …