We compare and contrast the long-time dynamical properties of two
individual-based models of biological coevolution. Selection occurs via
multispecies, stochastic population dynamics with reproduction probabilities
that depend nonlinearly on the population densities of all species resident in
the community. New species are introduced through mutation. Both models are
amenable to exact linear stability analysis, and we compare the analytic
results with large-scale kinetic Monte Carlo simulations, obtaining the
population size as a function of an average interspecies interaction strength.
Over time, the models self-optimize through mutation and selection to
approximately maximize a community fitness function, subject only to
constraints internal to the particular model. If the interspecies interactions
are randomly distributed on an interval including positive values, the system
evolves toward self-sustaining, mutualistic communities. In contrast, for the
predator-prey case the matrix of interactions is antisymmetric, and a nonzero
population size must be sustained by an external resource. Time series of the
diversity and population size for both models show approximate 1/f noise and
power-law distributions for the lifetimes of communities and species. For the
mutualistic model, these two lifetime distributions have the same exponent,
while their exponents are different for the predator-prey model. The difference
is probably due to greater resilience toward mass extinctions in the food-web
like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J.
Math. Biol., in pres