553 research outputs found

    Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler

    Full text link
    We report for the first time a parametric fit to the pattern of the \ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period \'echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of \ell = 3 modes, of \ell = 2 mixed modes, for the mode widths and amplitudes, and for the \ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.Comment: Accepted in A&

    II.2 Description of processes and corrections from observation to delivery

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    Solar-like oscillations with low amplitude in the CoRoT target HD 181906

    Full text link
    Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    CoRoT photometry and high-resolution spectroscopy of the interacting eclipsing binary AU Mon

    Get PDF
    Analyses of very accurate CoRoT space photometry, past Johnson V photoelectric photometry and high-resolution \'echelle spectra led to the determination of improved and consistent fundamental stellar properties of both components of AU Mon. We derived new, accurate ephemerides for both the orbital motion (with a period of 11.113d) and the long-term, overall brightness variation (with a period of 416.9d) of this strongly interacting Be + G semi-detached binary. It is shown that this long-term variation must be due to attenuation of the total light by some variable circumbinary material. We derived the binary mass ratio MG/MBM_{\rm G}/M_{\rm B} = 0.17\p0.03 based on the assumption that the G-type secondary fills its Roche lobe and rotates synchronously. Using this value of the mass ratio as well as the radial velocities of the G-star, we obtained a consistent light curve model and improved estimates of the stellar masses, radii, luminosities and effective temperatures. We demonstrate that the observed lines of the B-type primary may not be of photospheric origin. We also discover rapid and periodic light changes visible in the high-quality residual CoRoT light curves. AU Mon is put into perspective by a comparison with known binaries exhibiting long-term cyclic light changes.Comment: Accepted for publication in MNRA

    Predicting the detectability of oscillations in solar-type stars observed by Kepler

    Full text link
    Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.Comment: 21 pages, 6 figures, accepted for publication Astrophysical Journa

    Prospective exploratory muscle biopsy, imaging, and functional assessment in patients with late-onset Pompe disease treated with alglucosidase alfa: The EMBASSY Study

    Get PDF
    Background Late-onset Pompe disease is characterized by progressive skeletal myopathy followed by respiratory muscle weakness, typically leading to loss of ambulation and respiratory failure. In this population, enzyme replacement therapy (ERT) with alglucosidase alfa has been shown to stabilize respiratory function and improve mobility and muscle strength. Muscle pathology and glycogen clearance from skeletal muscle in treatment-naïve adults after ERT have not been extensively examined. Methods This exploratory, open-label, multicenter study evaluated glycogen clearance in muscle tissue samples collected pre- and post- alglucosidase alfa treatment in treatment-naïve adults with late-onset Pompe disease. The primary endpoint was the quantitative reduction in percent tissue area occupied by glycogen in muscle biopsies from baseline to 6 months. Secondary endpoints included qualitative histologic assessment of tissue glycogen distribution, secondary pathology changes, assessment of magnetic resonance images (MRIs) for intact muscle and fatty replacement, and functional assessments. Results Sixteen patients completed the study. After 6 months of ERT, the percent tissue area occupied by glycogen in quadriceps and deltoid muscles decreased in 10 and 8 patients, respectively. No changes were detected on MRI from baseline to 6 months. A majority of patients showed improvements on functional assessments after 6 months of treatment. All treatment-related adverse events were mild or moderate. Conclusions This exploratory study provides novel insights into the histopathologic effects of ERT in late-onset Pompe disease patients. Ultrastructural examination of muscle biopsies demonstrated reduced lysosomal glycogen after ERT. Findings are consistent with stabilization of disease by ERT in treatment-naïve patients with late-onset Pompe disease
    corecore