146 research outputs found

    Optical trapping microrheology in cultured human cells

    Get PDF
    We present the microrheological study of the two close human epithelial cell lines: non-cancerous HCV29 and cancerous T24. The optical tweezers tracking was applied to extract the several seconds long trajectories of endogenous lipid granules at time step of 1ÎŒs. They were analyzed using a recently proposed equation for mean square displacement (MSD) in the case of subdiffusion influenced by an optical trap. This equation leads to an explicit form for viscoelastic moduli. The moduli of the two cell lines were found to be the same within the experimental accuracy for frequencies 102 - 105 Hz. For both cell lines subdiffusion was observed with the exponent close to 3/4, the value predicted by the theory of semiflexible polymers. For times longer than 0.1s the MSD of cancerous cells exceeds the MSD of non-cancerous cells for all values of the trapping force. Such behavior can be interpreted as a signature of the active processes and prevents the extraction of the low-frequency viscoelastic moduli for the living cells by passive microrheolog

    Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Get PDF
    Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σ<sub>sp</sub>) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σ<sub>sp</sub> at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors <i>f</i>(RH)=σ<sub>sp</sub>(RH)/σ<sub>sp</sub>(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the <i>f</i>(RH) is available so far. At this site, <i>f</i>(RH=85%) varied between 1.2 and 3.3. Measured <i>f</i>(RH) agreed well with <i>f</i>(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good <i>f</i>(RH) predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σ<sub>sp</sub>(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σ<sub>sp</sub>, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol

    Effects of relative humidity on aerosol light scattering in the Arctic

    Get PDF
    Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σ<sub>sp</sub>(λ) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor <i>f</i>(RH, λ) is the key parameter to describe the RH effect on σ<sub>sp</sub>(λ) and is defined as the RH dependent σ<sub>sp</sub>(RH, λ) divided by the corresponding dry σ<sub>sp</sub>(RH<sub>dry</sub>, λ). During our campaign the average <i>f</i>(RH=85%, λ=550 nm) was 3.24±0.63 (mean ± standard deviation), and no clear wavelength dependence of <i>f</i>(RH, λ) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded <i>f</i>(RH, λ) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor <i>g</i>(RH), defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found, on average, <i>g</i>(RH=85%) values to be 1.61±0.12 (mean±standard deviation). No clear seasonal shift of <i>f</i>(RH, λ) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of <i>f</i>(RH, λ). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we present a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location

    Measuring movement fluency during the sit-to-walk task

    Get PDF
    Restoring movement fluency is a key focus for physical rehabilitation; it's measurement, however, lacks objectivity. The purpose of this study was to find whether measurable movement fluency variables differed between groups of adults with different movement abilities whilst performing the sit-to-walk (STW) movement. The movement fluency variables were: (1) hesitation during movement (reduction in forward velocity of the centre of mass; CoM), (2) coordination (percentage of temporal overlap of joint rotations) and (3) smoothness (number of inflections in the CoM jerk signal)

    One-Liners

    Get PDF
    One liners from: N.M. Martinez-Rossi, C. Andrade-Monteiro and S.R.C. Pombeiro; M. Orbach ; H. Liu and TJ. Schmidhauser; P.A. Hubbard and C.H. Wilso

    Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol

    Get PDF
    The influence of aerosol water uptake on the aerosol particle light scattering was examined at the regional continental research site Melpitz, Germany. The scattering enhancement factor f(RH), defined as the aerosol particle scattering coefficient at a certain relative humidity (RH) divided by its dry value, was measured using a humidified nephelometer. The chemical composition and other microphysical properties were measured in parallel. f(RH) showed a strong variation, e.g. with values between 1.2 and 3.6 at RH=85% and λ=550 nm. The chemical composition was found to be the main factor determining the magnitude of f(RH), since the magnitude of f(RH) clearly correlated with the inorganic mass fraction measured by an aerosol mass spectrometer (AMS). Hysteresis within the recorded humidograms was observed and explained by long-range transported sea salt. A closure study using Mie theory showed the consistency of the measured parameters

    Study of the relative humidity dependence of aerosol light-scattering in southern Spain

    Get PDF
    This investigation focuses on the characterisation of the aerosol particle hygroscopicity. Aerosol particle optical properties were measured at Granada, Spain, during winter and spring seasons in 2013. Measured optical properties included particle light-absorption coefficient (sap) and particle light-scattering coefficient (ssp) at dry conditions and at relative humidity (RH) of 85 +/- 10%. The scattering enhancement factor, f(RH=85%), had a mean value of 1.5 +/- 0.2 and 1.6 +/- 0.3 for winter and spring campaigns, respectively. Cases of high scattering enhancement were more frequent during the spring campaign with 27% of the f(RH=85%) values above 1.8, while during the winter campaign only 8% of the data were above 1.8. A Saharan dust event (SDE), which occurred during the spring campaign, was characterised by a predominance of large particles with low hygroscopicity. For the day when the SDE was more intense, a mean daily value of f(RH=85%)=1.3 +/- 0.2 was calculated. f(RH=85%) diurnal cycle showed two minima during the morning and afternoon traffic rush hours due to the increase in non-hygroscopic particles such as black carbon and road dust. This was confirmed by small values of the single-scattering albedo and the scattering Angstrom exponent. A significant correlation between f(RH=85%) and the fraction of particulate organic matter and sulphate was obtained. Finally, the impact of ambient RH in the aerosol radiative forcing was found to be very small due to the low ambient RH. For high RH values, the hygroscopic effect should be taken into account since the aerosol forcing efficiency changed from -13W/m2 at dry conditions to -17W/m2 at RH=85%.This work was supported by the Andalusia Regional Government through projects P10-RNM-6299 and P12-RNM-2409; by the Spanish Ministry of Economy and Competitiveness through projects CGL2010-18782, CSD2007-00067, CGL2011-13580-E/CLI and CGL2011-16124-E; and by EU through ACTRIS project (EU INFRA-2010-1.1.16-262254).G. Titos was funded by the program FPI of the Spanish Ministry of Economy and Competitiveness – Secretariat of Science, Innovation and Development under grant BES-2011-043721

    Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources

    Get PDF
    Knowledge of the scattering enhancement factor, f(RH), is important for an accurate description of direct aerosol radiative forcing. This factor is defined as the ratio between the scattering coefficient at enhanced relative humidity, RH, to a reference (dry) scattering coefficient. Here, we review the different experimental designs used to measure the scattering coefficient at dry and humidified conditions as well as the procedures followed to analyze the measurements. Several empirical parameterizations for the relationship between f(RH) and RH have been proposed in the literature. These parameterizations have been reviewed and tested using experimental data representative of different hygroscopic growth behavior and a new parameterization is presented. The potential sources of error in f(RH) are discussed. A Monte Carlo method is used to investigate the overall measurement uncertainty, which is found to be around 20 e40% for moderately hygroscopic aerosols. The main factors contributing to this uncertainty are the uncertainty in RH measurement, the dry reference state and the nephelometer uncertainty. A literature survey of nephelometry-based f(RH) measurements is presented as a function of aerosol type. In general, the highest f(RH) values were measured in clean marine environments, with pollution having a major influence on f(RH). Dust aerosol tended to have the lowest reported hygroscopicity of any of the aerosol types studied. Major open questions and suggestions for future research priorities are outlined.This work was supported by the Andalusia Regional Government through projects P10-RNM-6299 and P12-RNM-2409; by the Spanish Ministry of Economy and Competitiveness and FEDER through project CGL2013_45410-R; and by European Union’s Horizon 2020 research and innovation programme under grant agreement No 654109, ACTRIS-2. G. Titos was partially funded by Programa del Plan Propio de Investigación “Contrato Puente” of the University of Granada. We thank the Stockholm International Meteorological Institute (IMI) for travel support of G. Titos
    • 

    corecore