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Abstract. We present the microrheological study of the two close human epithelial cell lines: non-cancerous
HCV29 and cancerous T24. The optical tweezers tracking was applied to extract the several seconds long
trajectories of endogenous lipid granules at time step of 1 μs. They were analyzed using a recently proposed
equation for mean square displacement (MSD) in the case of subdiffusion influenced by an optical trap.
This equation leads to an explicit form for viscoelastic moduli. The moduli of the two cell lines were found
to be the same within the experimental accuracy for frequencies 102–105 Hz. For both cell lines subdiffusion
was observed with the exponent close to 3/4, the value predicted by the theory of semiflexible polymers.
For times longer than 0.1 s the MSD of cancerous cells exceeds the MSD of non-cancerous cells for all values
of the trapping force. Such behavior can be interpreted as a signature of the active processes and prevents
the extraction of the low-frequency viscoelastic moduli for the living cells by passive microrheology.

1 Introduction

Microrheology based on optical tweezers (OT) has be-
come a rapidly growing field in recent years (for review see
refs. [1–3] and references therein). In passive microrheol-
ogy a probe particle thermally fluctuates inside the sub-
stance under study, and the mean square displacement
(MSD) of its positions allows one to extract physical quan-
tities such as stiffness [3], compliance [4], viscosities [5] or
dynamic moduli [4,6,7]. In active microrheology the par-
ticle exerts a force on the sample. The examples are the
magnetic tweezers [8,9], oscillating OT [10–12] and the
membrane tether pulling techniques [13].

Changes in cell mechanics due to different types of can-
cer have been observed by many researchers (see review
ref. [14]). Generally, cancer cells become softer than their
normal analogues facilitating their motility and hence the
metastatic processes. Most of the available studies have
been performed by external methods such as stretching,
squeezing, indentation, or flow essays. In this work, the
passive microrheology provides the dynamical moduli in-
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side a living cell by tracking endogenous granules which
move in the cytoskeleton on a short length scale.

The cytoskeleton is a protein structure which plays
a major mechanical role in the cell, maintaining the cell
shape, protecting the cell organelles, enabling cellular mo-
tion and intracellular transport. It is a network of poly-
mer filaments which belong to three main groups: micro-
tubules, actin filaments and intermediate filaments [15,
16]. The biological function of these polymers requires con-
siderable mechanical rigidity. For example, actin filaments
form a network rigid enough to maintain the shape of the
cell and transmit forces, yet flexible enough to allow for
cell motion and internal reorganization in response to ex-
ternal stimuli. In vitro studies have revealed the mechan-
ical properties of the individual filaments, as well as the
properties of their networks in solution [6,17].

Most biopolymers are semiflexible, i.e. the aspect ra-
tio between the persistence length and the filament diam-
eter is large. One of the distinct properties of semiflex-
ible polymers is that they can form viscoelastic gels at
very low concentrations. At high frequencies, the complex
shear modulus of such gels presents a characteristic fre-
quency dependence G ∼ ω3/4 which has been explained
in the model of semi-flexible polymer networks [18,19].
This model describes the dynamics of the in vitro solutions
but fails for the cytoskeleton in vivo at frequencies below
102–103 Hz [18]. It has been shown that at low frequencies
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the important role is played by the network cross-linkers,
in particular by the molecular motors [20–22]. Varying
the cross-linker density at a constant concentration of
polymers can change the low frequency shear modulus by
several orders of magnitude [23]. But at high frequencies
the classical, 3/4, behavior of the semi-flexible polymers
is recovered both in vitro and in vivo [9,20,24–26]. The
frequency of the transition between the two types of re-
sponse, therefore, is expected to be connected to the type
and strength of cross-linking and motor activity inside the
cytoskeleton.

The viscoelastic moduli for the living cells obtained by
particle-tracking microrheology have been recently sum-
marized in ref. [3], but this technique provides the results
only at frequencies 0.1–102 Hz, corresponding to video de-
tection. To our knowledge, there exist only a limited num-
ber of works with the high-frequency microrheology for the
cytoskeleton of the living cells [9,20,24–27], and only one
of them presents the full frequency range of viscoelastic
moduli [24]. We use the optical tweezers with rather strong
trapping powers to hold the tracer for longer time and to
obtain several-seconds-long samples at 1MHz acquisition
rate (millions of points per trajectory). The overall dis-
placement of the tracer during the recording is ten times
smaller than its diameter that makes a principal difference
with the video tracking experiments [3], and provides the
larger statistics for each MSD calculation.

In this work we perform the microrheological mea-
surements by laser-tracking of the organelles trapped by
the OT in the cytoskeleton of two related types of cells:
the non-cancerous HCV29 and cancerous T24 epithelial
cells of human urine bladder. These cells types have been
chosen because the former elasticity measurements per-
formed for them by Atomic Force Microscopy (AFM) [28,
29] have shown a higher elasticity for the cancerous T24
line. Young’s modulus for the cancerous cell line was found
to be about one order of magnitude lower than for non-
cancerous ones. However, the AFM differs from microrhe-
ology in two major ways: it uses the external probe and is
conducted in a quasi-static regime which corresponds to
the low frequencies for the OT microrheology.

We calculate the viscoelastic moduli G′ and G′′ for
cancerous and non-cancerous cells and compare them for
the two cell lines in the range of 4 decades of frequency:
10–105 Hz. The OT exert their own elastic force on the
tracer, which influences the MSD at low frequencies and
complicates the calculation of viscoelastic moduli. We use
the newly proposed theoretical approach [30,31] to ac-
count for the tweezer-based elasticity in the analysis of the
data. To test the validity of this approach we performed
the measurements at different forces of the OT.

2 Materials and methods

The set-up consists of an optical trap combined with an in-
terferometric position detection system. The system is de-
scribed in details in refs. [32,33]. It is based on a Nd:YAG
laser, which has a wavelength of 1064 nm and maximum
power of 2W (MEPHISTO Innolight, GmbH). The op-
tical trap is composed of 10× beam expander and the

60× water immersion objective (Olympus UPlanApo/IR,
NA = 1.2).

The tracer trajectory is recorded through the back fo-
cal plane detection —the method which relies on the in-
terference between forward-scattered light from the bead
and unscattered light [34–36]. The interference signal is
monitored with a quadrant photodiode positioned on the
optical axis at a plane conjugate to the back focal plane
of the condenser [37]. By performing a statistical analysis
(explained in sect. 3) on the trajectories arising from the
thermal fluctuations of the tracer and its close environ-
ment, we extract physical quantities and can follow their
changes [3].

The cell lines chosen for the measurements are:
HCV29, non-cancerous bladder urothelium (cell line es-
tablished in Fibiger Institute, Copenhagen, Denmark),
and T24, bladder transitional cell carcinoma (ATCC
HTB4). The cells have been cultured at 37 ◦C in a 95%
air/5% CO2 incubator in RPMI medium containing 10%
fetal bovine serum. The cells were taken after the same
number of passages and cultured on standard glass cover-
slips. For the OT measurements the coverslips with cul-
tured cells were placed on top of the microscope slides,
separated by the spacers and the obtained chamber was
filled with the solution of polysterene calibration beads of
diameter 0.4μm in pure RPMI medium.

The cells contain the endogenous granules composed
of lipids with sizes varying from 0.2 to 3μm (fig. 1). The
granules of diameter about 0.4μm have been chosen as the
microrheological tracers. For each slide we first trap the
polystyrene beads outside the cell to calibrate the detec-
tor and to calculate the trap spring constant k. Then we
trapped the endogenous granules of a similar diameter and
recorded their trajectories using the calibration obtained
with the beads. In order not to disturb the back focal
plane detection, only the granules in the peripheral region
of the cell and clearly separated from all other structures
were chosen. The optical microscope does not allow us to
choose exactly the same diameter, so the size has been
verified through the post-experiment image analysis (see
table 1SM in supplementary materials (SM)).

Three different spring constants of the applied optical
trap: k1 = 4·10−6 N/m, k2 = 10−5 N/m, k3 = 3·10−5 N/m
correspond, respectively, to three laser powers in the sam-
ple plane: 5mW, 10mW, 40mW. At such powers and tak-
ing into account the weakly absorbing laser wavelength,
we consider the temperature effects negligible.

The living cells are the highly dynamic system, and the
granules are subject to both the passive fluctuations due
to the surrounding network and the active drive due to the
energy-consuming molecular motors. The chosen granule
has been attracted to the center of the trap, and the mea-
surement was started several seconds later, after the gran-
ule was stabilized in the trap. Nevertheless, some granules
managed to escape the trap during the recording, and such
trajectories have been excluded from the analysis. Also, we
have excluded all data, containing the excessive displace-
ment from the center of the trap —exceeding the linear
region of detector. We have observed that the number of
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Fig. 1. HCV29 cell during the microrheology measurement.
The arrow shows the position of the trapped lipid granule.
The 0.4 μm calibration beads stuck on the chamber surface are
out of focus (and distorted with astigmatism) as well as the
cell edges adherent to the substrate.

trajectories excluded for the T24 cell line exceeded that
for HCV29, so the lipid granules in the cancerous cell line
escaped the trap easier than in the non-cancerous one. It
is difficult to quantify the number of escapes, because one
cannot account for the measurements which had been in-
terrupted due to escape of the tracer from the trap. But
the number of granule escapes leading to the interruption
of recoding has been higher for T24 cells, and the per-
centage of trajectories excluded from analysis because of
nonlinearity was 50% for T24 against 30% for HCV29.
The total number of trajectories chosen for the analysis
was 33 for each cell line with a duration of 8 seconds each.

After the initial calibration using the detector constant
obtained from the polysterene beads, the time-averaged
MSD is calculated separately for each granule as

Δr(t)2 =
1

N − t/δt

N−t/δt∑

i=1

[
(x(iδt + t) − x(iδt))2

+(y(iδt + t) − y(iδt))2
]
,

where x(t) and y(t) are the coordinates of the granule
at time t, N is the number of points of a trajectory, t
is the lag time, and δt = 10−6 s is the time step of the
recording. The background noise is evaluated by recording
the signal from the empty trap placed inside the cell at a
point without apparent structures. The MSDs calculated
from such signal are averaged over several measurements
and the result is subtracted from the tracer MSD for each
measurement (see figs. 1SM-3SM).
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Fig. 2. The time-averaged mean-square displacement (MSD)
of the 0.4 μm diameter tracer in the purely viscous medium
outside the cell (black line) and inside the HCV29 cell (thick
grey line) where it presents the subdiffusive scaling. Thin grey
lines show the MSDs of different granules inside the cells.

3 Theoretical model

Since the tracer is in contact with the microscopic envi-
ronment, the structure of the surrounding medium influ-
ences the properties of the random motion and leaves its
“signature” in the recorded signal. For example, it has
been shown that the MSD of a tracer inside a viscoelastic
medium does not follow Einstein’s law, 〈Δr(t)2〉 ∼ t, but
presents the so-called subdiffusion scaling 〈Δr(t)2〉 ∼ tα,
where α < 1 is called the subdiffusion exponent [22,38]
(here 〈. . .〉 denotes the ensemble average over all possible
trajectories).

Figure 2 presents typical time-averaged MSDs: one ob-
tained in the purely viscous medium outside the cell and
the others in the viscoelastic interior of the cell. The thick
curve is the average over ten MSDs for granules inside
different cells shown by the thin lines.

The MSD curve for the bead outside the cell scales ∼ t
at short times and reaches a constant due to the trap con-
finement at longer times. For an n-dimensional isotropic
medium, this curve is analytically described as [39]

〈Δr2(t)〉 =
2kBT

k
n

(
1 − exp

(
−k

γ
t

))
, (1)

where kB is Boltzmann’s constant, T the absolute temper-
ature, γ the friction coefficient, k the trap spring constant,
and n = 2 in our case. For a spherical tracer of radius a,
the friction coefficient is γ = 6πaη, where η is the fluid
viscosity. At short times, one retrieves 〈Δr2(t)〉 ≈ 2nDt,
with the diffusion coefficient D = kBT/γ.

We assume that the motion of a tracer inside the cell
can be described by a generalized Langevin equation,

mẍ +
∫ t

0

dt′γ(t − t′)ẋ(t′) + kx = F (t), (2)

with a power law memory kernel
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γ(t) = γα
t−α

Γ (1 − α)
,

Γ (z) being the Gamma function, m the mass of the tracer
and F (t) the thermal Gaussian force with zero mean and
the covariance satisfying the fluctuation-dissipation the-
orem [40]: 〈F (t)F (t′)〉 = kBTγ(|t − t′|). Note that the
parameter γα describing viscosity is in units of N sα/m.

Desposito and Vinales have derived the analytical for-
mula for the limiting MSD [30] and then this formula was
shown to be applicable to the time-averaged MSD for a
long enough sample [31]. For sample length Nδt � τk =
(γα/k)1/α and for small particles (when the inertia can
be neglected), the exact equation takes the approximate
form

〈
Δr2(t)

〉
=

2kBT

k
n

(
1 − Eα

(
− k

γα
tα

))
, (3)

where Eα is the Mittag-Leffler function. In the case of
classical diffusion (α = 1) eq. (3) simplifies to eq. (1).

The time τk = (γα/k)1/α characterizes the transition
between the subdiffusive and confined regimes. At short
times (i.e., t � τk), one retrieves the subdiffusive scaling,
〈Δr2(t)〉 ≈ 2nDαtα/Γ (1 + α), where Dα = kBT/γα is
the generalized diffusion coefficient (in units of m2/sα).
In the opposite limit of long enough time (i.e., τ � τk),
MSD slowly approaches a constant 2kBT/k set by the
trapping potential. Two other time scales, τm =

√
m/k

and τp = ( m
γα

)
1

2−α characterize the smallness of the inertial

term in eq. (2) in comparison to the trapping and viscous
forces, respectively. In appendix A we show that both of
them are of the order of microseconds for our experiments,
so that the inertia can indeed be neglected.

The complex shear modulus, G∗ = G′ + iG′′, is the
quantity conventionally used in microrheology to repre-
sent the viscoelastic properties of the medium. Its real
part, G′(ω), is called elastic or storage modulus, and the
imaginary part, G′′(ω), is called viscous or loss modulus.
The relationship between the MSD and the complex shear
modulus is given by the Generalized Stokes-Einstein equa-
tion (GSE) [7,41]. The GSE equation allows one to obtain
the Laplace transform of the viscoelastic shear modulus
of the fluid from the Laplace transform of the MSD. In a
trapping potential, the GSE equation reads [30]

G̃(s) =
kBT

πas〈Δr2(s)〉 −
k

6πa
− ms2

6πa
, (4)

where 〈Δr2(s)〉 =
∫ ∞
0

dte−ts〈Δr2(t)〉 is a Laplace trans-

form of the MSD, G̃(s) is the Laplace transform of the
stress relaxation modulus Gr(t), which is related to com-
plex shear modulus G∗ through the unilateral Fourier
transformation.

The first term in eq. (4) is the classical GSE, the sec-
ond term describes the influence of the OT, and the last
term is the influence of the particles inertia which is neg-
ligible in most particle tracking experiments. Now, having

the analytical eq. (3), we can obtain the analytical expres-
sion for complex shear modulus in the case of subdiffusion.
Substituting eq. (3) into eq. (4) and following ref. [7] to re-
place the Laplace Transform with the Fourier Transform,
we obtain the following expressions for viscoelastic moduli
G′(ω) and G′′(ω):

G′(ω) =
1

6πa
γαωα cos

(πα

2

)
,

G′′(ω) =
1

6πa
γαωα sin

(πα

2

)
. (5)

This procedure is equivalent to the subtraction of the
term k

6πa in eq. (4), where k is the parameter, obtained
from eq. (3). The expressions (5) are free from the influ-
ence of the trap and, thus, allow one to extend the region
of analysis to the frequencies where traditional power law
fitting is prevented by the trap. One therefore obtains the
model-dependent continuation (eq. (5)) of G′ to the low-
frequency range influenced by the trap. We expect eq. (5)
to be correct for all frequencies corresponding to times at
which eq. (3) fits well the experimental MSDs.

In this work, we are using eqs. (3) and (5) to calcu-
late the viscoelastic moduli in the range where eq. (3) fits
well, and the results of such calculation are compared with
the results obtained by the program recently published in
ref. [4].

4 Results and discussion

4.1 MSD analysis for non-cancerous and cancerous
cells

Figure 2 presents the MSD of a typical dataset with the
intermediate trap stiffness together with the correspond-
ing MSD outside the cell. Datasets with other k are given
in the Supplementary Material (figs. 1SM-3SM). Differ-
ent curves correspond to different granules trapped inside
the cells (one granule per cell). At short times we observe
the diffusive behavior in water and subdiffusion inside the
cells. At long time the MSD becomes influenced by the
optical potential and tends to a constant.

All curves were analyzed by fitting to eq. (3). The pa-
rameters of the fitting program have been defined as fol-
lows:

X1 =
2kBT

k
, X2 = α, X3 =

(
k

γα

) 1
α

, (6)

X1 is the empirical plateau value of the MSD curve which
is defined by the trap stiffness, X2 is the empirical subd-
iffusion exponent, and X3 is the empirical crossover fre-
quency, or the inverse of τk at which the subdiffusive mo-
tion starts to be confined. The parameters obtained from
10–12 different tracers for each cell line and each trap
stiffness have been averaged and summarized in table 1.
The fitting interval has been chosen 10−5–1 s which is 2
decades larger than the interval for which a power law fit
would yield the same fitting quality.
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Table 1. Parameters obtained from fitting eq. (3) to the MSD of the granules inside cells. The uncertainty is the standard
deviation of parameters between different granules.

Trap stiffness (N/m) Cell line X1 (nm2) X2 X3 (Hz)

4 · 10−6 HCV29 1277 ± 721 0.70 ± 0.07 11 ± 9

T24 1413 ± 669 0.69 ± 0.07 6 ± 3

10−5 HCV29 679 ± 258 0.73 ± 0.02 36 ± 18

T24 487 ± 198 0.67 ± 0.05 10 ± 7

3 · 10−5 HCV29 186 ± 58 0.73 ± 0.04 172 ± 88

T24 218 ± 52 0.75 ± 0.03 166 ± 103

The simple power law fit fails for all lag times greater
than 10−2 s (see fig. 4SM). The subdiffusion coefficients
obtained from the fit by means of eq. (3) and by the power
law fit for different fitting intervals are given in table 2SM
together with the error variance of the fit.

One can easily observe that the subdiffusion exponent,
X2, is the same for cancerous and non-cancerous cells
within the experimental uncertainty. Its value is close to
3/4, the value predicted by the theory of semiflexible poly-
mers. This result confirms the findings reported for the
mammalian cells in refs. [9,20,24,26] and contradicts the
recent ref. [27] for yeast cells.

The absolute values of MSD and the plateau parameter
X1 have to be taken with caution because of two reasons:
the experimental uncertainty coming from the same cali-
bration applied to granules of slightly different sizes, and
the wide distribution of the MSD (see figs. 1SM-3SM). The
wide distribution of MSD in the semiflexible networks has
been observed both in vitro [42] and in vivo [9,20] and has
been attributed to the high heterogeneity of the network.

The most important difference between the cell lines is
observed in the crossover frequency, X3, which is smaller
for the cancerous cells in two datasets. It corresponds to
the passage to the confined regime at longer times (bigger
τk). In the case of the highest trap stiffness the difference is
insignificant confirming that the observed effect originates
from the low-frequency properties of the cells.

In order to compare the long-time behavior of the
MSDs of the two cell lines visually, the MSD curves have
been normalized to make their values coincide at the min-
imal lag time. This procedure is justified by the fact that
for short times, 〈Δr2(t)〉 ≈ 2kBT

γαΓ (1+α) t
α, and thus it should

not depend on the trap stiffness. The resulting curves are
presented in fig. 3 which shows the difference in the long
lag time behavior of MSD for the two cell lines. For all
three datasets, the MSDs of the cancerous cells exceed
the MSDs of the non-cancerous cells at t > τk. This re-
sult agrees with the data of ref. [43] in which fig. 2 shows
that at the lag time about 0.05 s (initial point in ref. [43])
the MSDs of the non-cancerous and cancerous cells ap-
proach each other; whereas, at longer times the MSD of
the cancerous cells increases more rapidly than MSD of
the non-cancerous ones.

The possible explanations for the bigger MSD of the
cancerous cells are numerous. Most importantly, it cor-
responds to the lower stiffness at low frequency observed

10-3 10-2 10-1 100

10-4

10-3

M
S

D
 (μ

m
2 )

Time lag (s)

k1 HCV
k

1
 T24

k
2
 HCV

k
2
 T24

k3 HCV
k3 T24

Fig. 3. Ensemble-averaged and renormalized MSD for the non-
cancerous (full lines) and cancerous (dashed lines) cells for dif-
ferent trap stiffness. The MSD of the cancerous cells exceeds
the MSD of the non-cancerous cells for all trap powers at lag
times τ > τk.

for these cells in AFM [28,29]. Another important con-
sideration is the impact of molecular motors and other
types of metabolic activity. As previously noted, the num-
ber of the tracers escaping the trap during recording was
higher for the T24 cells. References [12,26,44] have shown
that the molecular motors generate strong random fluc-
tuations particularly apparent at time scales longer than
0.1 s. The resulting random displacements have a super-
diffusive character which is usually explained by the non-
thermal forces [8,45]. The passage from subdiffusion to
superdiffusion has been shown in refs. [22,46–48] and oth-
ers. In our case the superdiffusion would be hindered by
the trap, but it may produce the effective increase of τk.
If the bigger τk in cancerous cells is the consequence of su-
perdiffusion, it means that the molecular motors are more
active in the cancerous cells. For example, blocking the
myosin II motors by blebbistatin results in the decrease
of long-time MSD, and the effect is more pronounced in
the cancerous cells, as illustrated in the Supplementary
Material (fig. 5SM). The detailed discussion of this topic
will be a subject of a separate publication.

Note that for the strongest trap the difference in τk

between cancerous and non-cancerous cells is insignificant
because the strong confinement overcomes the motor ac-
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tivity almost completely. In fact, in order to overcome the
trap force, several motors should work collectively [49],
and the probability of such collective action becomes too
small for the bigger force.

The short-time (10−5–10−3 s) MSDs of both cell lines
coincide within experimental uncertainty. If we extrap-
olate the unconstrained (without influence of the trap)
MSD as 2kBT

γαΓ (1+α) t
α using the parameters from table 1,

we obtain MSD at 0.05 s equal 10−3 μm2 that corresponds
closely to the values from ref. [43] at 0.05 s for both can-
cerous and non-cancerous cells. In order to compare our
results to the MSDs reported in refs. [20,26], the MSD de-
pendence on the tracer size (MSD ∼ a−1) has to be consid-
ered. We prefer thus to compare the viscoelastic moduli,
for which tracer size is already taken into account.

4.2 Calculation of viscoelastic moduli G′(ω) and
G′′(ω)

We have calculated the viscoelastic moduli from the ex-
perimental MSDs using the procedure described recently
in [4]. This procedure makes use of the relationship be-
tween the complex shear modulus G∗(ω) and the Fourier
transformed compliance Ĵ(ω) and allows one to avoid the
Laplace transform. It correctly preserves the experimen-
tal noise and requires a single theoretical parameter: the
inverse of the gradient of MSD at the long time limit. As
we suppose that the MSD in the trap at long time tends
to a constant, we have used the high value for its inversed
gradient (η = 1010 Pa s) that provides the constant value
of G′(ω) at low frequency limit. We have observed that
increasing further this parameter had almost no influence
on the results. In the following we call the moduli obtained
by this procedure the experimental moduli.

Figure 4 compares the experimental moduli to the
model-dependent ones calculated using eq. (5) with pa-
rameters of table 1 for the strongest trap and the weakest
traps. The low-frequency parts of the experimental curves
are noisy due to the small number of points for the cal-
culation. The model-dependent curves fit the experimen-
tal ones for the high frequency —this is the direct con-
sequence of the corresponding fit of MSD at small times.
At low frequencies the addition of a trap-dependent con-
stant G′

trap = 2kBT
6πaX1

to G′(ω) from eq. (5) is required to
make the two curves superimpose. Figure 4 also shows the
model-dependent elastic modulus G′(ω) without the influ-
ence of the trap which we consider justified as long as the
fit of the trap-dependent curve is good (ω > 10Hz). De-
spite of the fact that the influence of the trap is significant
even for the weakest trap, eq. (5) allows us to extract the
model-dependent moduli for the region 10–105 Hz.

The model-dependent moduli without the influence of
the trap for all tracers of T24 have been averaged to ob-
tain fig. 5a. The geometric mean has been used to keep
the correct power law, and the results are presented in the
log scale. After the subtraction of the trap influence the
viscoelastic moduli almost coincide within the statistical
uncertainty for all six datasets: two cell types and three
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Fig. 4. Frequency dependence of the viscoelastic moduli, G′

and G′′, for the non-cancerous HCV29 cells obtained with trap-
ping spring constants a) k1 and b) k3. The noisy traces are
the experimental moduli obtained by the program of ref. [4],
and the calculated curves are obtained using eq. (5). The ex-
perimental storage modulus is affected by the trapping spring
constant, and after its subtraction as described in the text the
moduli become the same for different traps.

values of stiffness. The high statistical uncertainty is the
consequence of the wide distribution of the MSD values,
and the moduli below 50Hz are not significant as the stan-
dard deviation exceeded the mean value (see fig. 5a).

Figure 5b provides the summary of our results for the
significant region of 102–105 Hz for both cell lines calcu-
lated as the geometric mean over the moduli obtained
with different trap forces. The difference between the cell
lines is insignificant within the experimental error. One
can notice that the viscous modulus is generally larger
than the elastic one. It is a direct consequence of the
slope 3/4 because the ratio of the viscoelastic moduli is
G′′/G′ = tan(πα/2).

The comparison with literature data is complicated by
the fact that the more traditional particle tracking mi-
crorheology usually gives the viscoelastic moduli for fre-
quencies 0.01–10Hz. We have found only two works in
which the high-frequency intracellular viscoelastic mod-
uli for the living cells are provided: ref. [24] for human
kidney and refs. [20,26] for monkey kidney TC7 epithe-
lial cell lines. The moduli of ref. [24] are about 5–7 times
bigger than ours at frequencies 103–105 Hz. The moduli
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Fig. 5. Model-dependent viscoelastic moduli, log10 (G(Pa)),
calculated using eq. (5) from different datasets. (a) elastic mod-
ulus, G′, for experiments in T24 cell line with different trap
spring constant. The error bars are the SD between the differ-
ent tracers within one spring constant dataset. (b) Viscoelas-
tic moduli, G′, (black) and G′′ (grey) for the two cell lines.
For each cell line the viscous modulus is bigger than the elas-
tic modulus. The error bars are the SD between the different
datasets. The difference between the cell lines is insignificant
within the experimental error.

presented in refs [20,26] are consistent with the ones that
we obtain for the high-frequency region. Notably, at the
frequency 1000 rad/s, ref. [26] gives |G∗| = 40Pa against
our 44 Pa.

As already mentioned in the MSD analysis, ref. [43]
provides the MSD similar to our results for breast epithe-
lial MCF-7 (cancerous) and MCF-10A (non-cancerous)
cells with the tracers of 0.5 μm diameter, but lacks the
high-frequency region. Reference [43] does not provide the
viscoelastic moduli obtained from the MSD, but discusses
that they are of the order of several pascals; whereas, the
moduli obtained for the same cells with AFM are of the
order of kPa. It is exactly the same situation for the cell
lines studied in this work. The AFM values for HCV29
and T24 cells reported in ref. [28] are: G′ = 10.3±3.4 kPa
for HCV29 and G′ = 1.8 ± 0.6 kPa for T24 —orders of
magnitude larger than our results at low frequencies.

In agreement with ref. [43] this shows that the intracel-
lular microrheological data cannot be directly compared
to the AFM stiffness measurements. The two possible rea-
sons for this difference are: i) the AFM elastic modulus is
obtained in the quasi-static regime, and the cell has time
to react, ii) the microrheology probes the dynamics of the
cytoskeleton itself; whereas, the AFM probably probes a
combination of the elastic shell and the viscoelastic inte-
rior of the cell. Therefore, this confirms the idea that the
difference between the cancerous and non-cancerous cells
is not due to their cytoskeleton structure.

5 Conclusions

We have measured the mean square displacements of the
endogenous tracers in the non-cancerous HCV29 and can-
cerous T24 epithelial cells of human urine bladder and
tested the new theoretical approach proposed in refs. [30,
31]. Both HCV29 and T24 cells reveal close sub-diffusive
exponents: 0.72± 0.04 for HCV29 and 0.70± 0.04 for T24
which seem to correspond to the prediction of the model of
semi-flexible polymers [18]. The viscoelastic moduli have
been calculated in the model-dependent manner and pro-
vide the reasonable values in the region 102–105 Hz where
the model of semiflexible polymers well describes tracer
motion.

We have not found significant difference between the
HCV29 and T24 cells at the frequencies 102–105 Hz, which
suggests that the cytoskeleton polymer network of the two
cell lines has similar structure. Nevertheless, we have ob-
served a tendency of the cancerous cells to show the larger
MSDs at long lag time, confirming the earlier findings in
the other microrheological studies of cancerous and non-
cancerous cells [43].

The increase in MSD shows that at low frequencies
the cancerous cells possess the ability to restructure the
cytoskeleton to adapt to the external force. This provides
a possible explanation for the AFM results [28,29] which
had shown an order of magnitude difference in the stiffness
of these cell lines.
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the instrumental part. Elena Bertseva thanks for support the
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discussions.

Appendix A.

The generalized Langevin equation (2) has three charac-
teristic times:

τm =
√

m/k: time of crossover from ballistic to trap-
confined motion,

τp = ( m
γα

)
1

2−α : time of crossover from ballistic to diffu-
sive motion,

τk = (γα/k)1/α: time of crossover from diffusive to
trap-confined motion.
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For a bead of radius 0.2μm and a density close to
the one of water (as all our tracers have such density),
the mass m is about 3 · 10−17 kg. Taking the intermedi-
ate trap stiffness k = 10−5 N/m, we obtain τm =

√
m/k

about 2 · 10−6 s. On the other hand, the time of crossover
from diffusive to trap-confined motion, τk = (γα/k)1/α,
is obtained from the fitting of experimental MSDs, and is
bigger than 5 · 10−3 s (the value for the strongest trap).
The time limit of ballistic regime, τp, can be expressed
through the first two, and equals

τp =
(

m

γα

) 1
2−α

=
(

τ2
m

τα
k

) 1
2−α

≈ 10−7 s.

As the lower time limit of our investigation is 10−5 s, the
inertia of the particle has been neglected in the solution
of eq. (2)

References

1. A. Yao et al., Lab. Chip 9, 2568 (2009).
2. Y. Kimura, J. Phys. Soc. Jpn. 78, 041005 (2009).
3. D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).
4. R.M.L. Evans et al., Phys. Rev. E 80, 012501 (2009).
5. C. Guzman et al., Appl. Phys. Lett. 93, 184102 (2008).
6. H. Lee et al., Acta Biomateri. 6, 1207 (2010).
7. T.G. Mason, Rheol. Acta 39, 371 (2000).
8. P. Bursac et al., Nat. Mater. 4, 557 (2005).
9. L. Deng et al., Nat. Mater. 5, 636 (2006).

10. M.-T. Wei et al., Opt. Express 16, 8594 (2008).
11. L.A. Hough, H.D. Ou-Yang, Phys. Rev. E 73, 031802

(2006).
12. D. Mizuno et al., Macromolecules 41, 7194 (2008).
13. D. Raucher et al., in Methods in Cell Biology (Academic

Press, 2008) pp. 451.
14. S. Suresh, Acta Mater. 55, 3989 (2007).
15. K.E. Kasza et al., Curr. Opin. Cell Biol. 19, 101 (2007).
16. M.R.K. Mofrad, Annu. Rev. Fluid Mech. 41, 433 (2009).

17. Y.-C. Lin et al., Soft Matter 7, 902 (2011).
18. F. Gittes, F.C. MacKintosh, Phys. Rev. E 58, R1241

(1998).
19. D.C. Morse, Macromolecules 31, 7044 (1998).
20. K.M. Van Citters et al., Biophys. J. 91, 3946 (2006).
21. C.M. Hale et al., PLoS ONE 4, e7054 (2009).
22. L. Bruno et al., Phys. Rev. E 80, 011912 (2009).
23. M.L. Gardel et al., Phys. Rev. Lett. 93, 188102 (2004).
24. S. Yamada et al., Biophys. J. 78, 1736 (2000).
25. I.M. Tolic-Norrelykke et al., Phys. Rev. Lett. 93, 078102

(2004).
26. B.D. Hoffman et al., Proc. Natl. Acad. Sci. U.S.A. 103,

10259 (2006).
27. J.-H. Jeon et al., Phys. Rev. Lett. 106, 048103 (2011).
28. M. Lekka et al., Biochim. Biophys. Acta 1540, 127 (2001).
29. M. Lekka et al., Eur. Biophys. J. 28, 312 (1999).
30. M.A. Desposito, A.D. Vinales, Phys. Rev. E 80, 021111

(2009).
31. D. Grebenkov, Phys. Rev. E 83, 061117 (2011).
32. E. Bertseva et al., Nanotechnology 20, 285709 (2009).
33. S. Jeney et al., Nanotechnology 21, 255102 (2010).
34. K.C. Neuman, S.M. Block, Rev. Sci. Instrum. 75, 2787

(2004).
35. A. Rohrbach et al., Rev. Sci. Instrum. 75, 2197 (2004).
36. S. Jeney et al., Phys. Rev. Lett. 100, 240604 (2008).
37. F. Gittes, G. Schmidt, Opt. Lett. 23, 7 (1998).
38. M.J. Saxton, K. Jacobson, Annu. Rev. Biophys. Biomol.

Struct. 26, 373 (1997).
39. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
40. R. Kubo et al., Statistical Physics II. Nonequilibrium Sta-

tistical Mechanics (Springer, Berlin, 1985).
41. T.G. Mason et al., J. Opt. Soc. Am. A 14, 139 (1997).
42. T. Gisler, D.A. Weitz, Phys. Rev. Lett. 82, 1606 (1999).
43. Y. Li et al., J. Biomed. Opt. 14, 064005 (2009).
44. D. Mizuno et al., Science 315, 370 (2007).
45. A.W.C. Lau et al., Phys. Rev. Lett. 91, 198101 (2003).
46. Y. Tseng et al., Biophys. J. 83, 3162 (2002).
47. M.A. Despósito et al., Physica A 390, 1026 (2011).
48. D. Arcizet et al., Phys. Rev. Lett. 101, 248103 (2008).
49. A. Caspi et al., Phys. Rev. E 66, 011916 (2002).


