587 research outputs found

    ROBOTRAN: a powerful symbolic gnerator of multibody models

    Get PDF
    The computational efficiency of symbolic generation was at the root of the emergence of symbolic multibody programs in the eighties. At present, it remains an attractive feature of it since the exponential increase in modern computer performances naturally provides the opportunity to investigate larger systems and more sophisticated models for which real-time computation is a real asset. <br><br> Nowadays, in the context of mechatronic multibody systems, another interesting feature of the symbolic approach appears when dealing with enlarged multibody models, i.e. including electrical actuators, hydraulic devices, pneumatic suspensions, etc. and requiring specific analyses like control and optimization. Indeed, since symbolic multibody programs clearly distinguish the modeling phase from the analysis process, extracting the symbolic model, as well as some precious ingredients like analytical sensitivities, in order to export it towards any suitable environment (for control or optimization purposes) is quite straightforward. Symbolic multibody model portability is thus very attractive for the analysis of mechatronic applications. <br><br> In this context, the main features and recent developments of the ROBOTRAN software developed at the Université catholique de Louvain (Belgium) are reviewed in this paper and illustrated via three multibody applications which highlight its capabilities for dealing with very large systems and coping with multiphysics issues

    An original interferometric study of NGC 1068 with VISIR BURST mode images

    Full text link
    We present 12.8 microns images of the core of NGC 1068 obtained with the BURST mode of the VLT/VISIR. We trace structures under the diffraction limit of one UT and we investigate the link between dust in the vicinity of the central engine of NGC 1068, recently resolved by interferometry with MIDI, and more extended structures. This step is mandatory for a multi-scale understanding of the sources of mid-infrared emission in AGNs. A speckle processing of VISIR BURST mode images was performed to extract very low spatial-frequency visibilities, first considering the full field of VISIR BURST mode images and then limiting it to the mask used for the acquisition of MIDI data. Extracted visibilities are reproduced with a multi-component model. We identify two major sources of emission: one compact < 85 mas, associated with the dusty torus, and an elliptical one, (< 140) mas x 1187 mas at P.A.=-4 degrees from N to E. This is consistent with previous deconvolution processes. The combination with MIDI data reveals the close environment of the dusty torus to contribute to about 83 percent of the MIR flux seen by MIDI. This strong contribution has to be considered in modeling long baseline interferometric data. It must be related to the NS elongated component which is thought to originate from individually unresolved dusty clouds and is located inside the ionization cone. Low temperatures of the dusty torus are not challenged, emphasizing the scenarios of clumpy torus.Comment: 10 pages, 7 figures, accepted for publication in A&

    Simplifying transformations for nonlinear systems: Part I, an optimisation-based variant of normal form analysis

    Get PDF
    This paper introduces the idea of a ‘simplifying transformation’ for nonlinear structural dynamic systems. The idea simply stated; is to bring under one heading, those transformations which ‘simplify’ structural dynamic systems or responses in some sense. The equations of motion may be cast in a simpler form or decoupled (and in this sense, nonlinear modal analysis is encompassed) or the responses may be modified in order to isolate and remove certain components. It is the latter sense of simplification which is considered in this paper. One can regard normal form analysis in a way as the removal of superharmonic content from nonlinear system response. In the current paper, this problem is cast in an optimisation form and the differential evolution algorithm is used

    An innovative quality improvement curriculum for third-year medical students

    Get PDF
    Background: Competence in quality improvement (QI) is a priority for medical students. We describe a self-directed QI skills curriculum for medical students in a 1-year longitudinal integrated third-year clerkship: an ideal context to learn and practice QI. Methods: Two groups of four students identified a quality gap, described existing efforts to address the gap, made quantifying measures, and proposed a QI intervention. The program was assessed with knowledge and attitude surveys and a validated tool for rating trainee QI proposals. Reaction to the curriculum was assessed by survey and focus group. Results: Knowledge of QI concepts did not improve (mean knowledge score&#x00B1;SD): pre: 5.9&#x00B1;1.5 vs. post: 6.6&#x00B1;1.3, p=0.20. There were significant improvements in attitudes (mean topic attitude score&#x00B1;SD) toward the value of QI (pre: 9.9&#x00B1;1.8 vs. post: 12.6&#x00B1;1.9, p=0.03) and confidence in QI skills (pre: 13.4&#x00B1;2.8 vs. post: 16.1&#x00B1;3.0, p=0.05). Proposals lacked sufficient analysis of interventions and evaluation plans. Reaction was mixed, including appreciation for the experience and frustration with finding appropriate mentorship. Conclusion: Clinical-year students were able to conduct a self-directed QI project. Lack of improvement in QI knowledge suggests that self-directed learning in this domain may be insufficient without targeted didactics. Higher order skills such as developing measurement plans would benefit from explicit instruction and mentorship. Lessons from this experience will allow educators to better target QI curricula to medical students in the clinical years

    The Pulsation of Chi Cygni Imaged by Optical Interferometry; a Novel Technique to Derive Distance and Mass of Mira Stars

    Get PDF
    We present infrared interferometric imaging of the S-type Mira star Chi Cygni. The object was observed at four different epochs in 2005-2006 with the IOTA optical interferometer (H band). Images show up to 40% variation in the stellar diameter, as well as significant changes in the limb darkening and stellar inhomogeneities. Model fitting gave precise time-dependent values of the stellar diameter, and reveals presence and displacement of a warm molecular layer. The star radius, corrected for limb darkening, has a mean value of 12.1 mas and shows a 5.1mas amplitude pulsation. Minimum diameter was observed at phase 0.94+/-0.01. Maximum temperature was observed several days later at phase 1.02+/-0.02. We also show that combining the angular acceleration of the molecular layer with CO (Delta v = 3) radial velocity measurements yields a 5.9+/-1.5 mas parallax. The constant acceleration of the CO molecules -- during 80% of the pulsation cycle -- lead us to argument for a free-falling layer. The acceleration is compatible with a gravitational field produced by a 2.1(+1.5/-0.7) solar mass star. This last value is in agreement with fundamental mode pulsator models. We foresee increased development of techniques consisting in combining radial velocity with interferometric angular measurements, ultimately allowing total mapping of the speed, density, and position of the diverse species in pulsation driven atmospheres.Comment: 36 pages, accepted in Ap

    Influence of total sugar intake on metabolic blood markers at 8 years of age in the Childhood Obesity Project

    Get PDF
    PURPOSE We aimed to characterize the association of dietary sugar intake with blood lipids and glucose-related markers in childhood. METHODS Data from the multicentric European Childhood Obesity Project Trial were used. Three-day weighed dietary records were obtained at 8~years of age along with serum concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), glucose, and insulin. Total sugar intake comprised all mono- and disaccharides; different sugar sources were defined. Linear regression models were applied to investigate the cross-sectional association of total sugar intake with blood lipids and glucose-related markers with adjustment for total energy intake using the residual method. RESULTS Data were available for 325 children. Children consumed on average 332~kcal (SD 110) and 21% (SD 6) of energy from total sugar. In an energy-adjusted model, an increase of 100~kcal from total sugar per day was significantly associated with a z score HDL-C decrease (-~0.14; 95% CI -~0.01, -~0.27; p value = 0.031). Concerning different food groups of total sugar intake, 100~kcal total sugar from sweetened beverages was negatively associated with z score HDL-C (-~1.67; 95% CI -~0.42, -~2.91; p value = 0.009), while total sugar from milk products was positively related to z score HDL-C (1.38, 95% CI 0.03, 2.72; p value = 0.045). None of the other blood lipids or glucose-related markers showed a significant relationship with total sugar intake. CONCLUSION Increasing dietary total sugar intake in children, especially from sweetened beverages, was associated with unfavorable effects on HDL-C, which might increase the long-term risk for dyslipidemia and cardiovascular disease. CLINICAL TRIAL REGISTRY ClinicalTrials.gov Identifier: NCT00338689; Registered: June 19, 2006. URL: https://clinicaltrials.gov/ct2/show/NCT00338689?term=NCT00338689&rank=1

    Topological Optimization of Compliant Adaptive Wing Structure

    Full text link
    corecore