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Abstract. The computational efficiency of symbolic generation was at the root of the emergence of symbolic
multibody programs in the eighties. At present, it remains an attractive feature of it since the exponential in-
crease in modern computer performances naturally provides the opportunity to investigate larger systems and
more sophisticated models for which real-time computation is a real asset.

Nowadays, in the context of mechatronic multibody systems, another interesting feature of the symbolic ap-
proach appears when dealing with enlarged multibody models, i.e. including electrical actuators, hydraulic
devices, pneumatic suspensions, etc. and requiring specific analyses like control and optimization. Indeed,
since symbolic multibody programs clearly distinguish the modeling phase from the analysis process, extract-
ing the symbolic model, as well as some precious ingredients like analytical sensitivities, in order to export
it towards any suitable environment (for control or optimization purposes) is quite straightforward. Symbolic
multibody model portability is thus very attractive for the analysis of mechatronic applications.

In this context, the main features and recent developments of the ROBOTRAN software developed at the
Universit́e catholique de Louvain (Belgium) are reviewed in this paper and illustrated via three multibody ap-
plications which highlight its capabilities for dealing with very large systems and coping with multiphysics
issues.

1 Introduction

Before the appearance of efficient computer architectures
for scientific numerical computations, only analytical meth-
ods were available for modeling systems. The analyses of-
ten used rather restrictive hypotheses (truncated and/or lin-
earized models, for instance). The emergence of powerful
processors and reliable and user-friendly languages and soft-
ware led the scientific community to develop numerical pro-
grams able to cover a wide range of applications in a given
field (e.g. structural dynamics, multibody dynamics, fluid
mechanics, electronic circuits,. . .). Regarding multibody dy-
namics, numerous so-called multibody programs were de-
veloped all over the world as from the seventies (Schiehlen,
1990), each of them being described as a general purpose
code although, in reality, faced with the huge variety of ap-

plications, they all impose some restrictions on the modeling
and analysis processes.

1.1 System modeling versus system analysis

From our point of view, it is useful to distinguish modeling
from analysis. Themodelingphase is the analytical, numeri-
cal or symbolical process which, once and for all, sets up the
equations of motion describing a multibody system (MBS in
short) for a given set of system parameters and generalized
coordinates. For instance, the direct dynamic model is illus-
trated in Fig.1 as a block whose input are the system parame-
tersδ (joints location, body masses, and inertia, etc.) and the
generalized positionsq and velocities ˙q and whose outputs
are the generalized accelerations ¨q and the Lagrange multi-
pliersλ. Theanalysisphase denotes any numerical process
which uses amodel(or part of it) to generate the expected
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Figure 1. Direct Dynamic Model: main input/output.

results. Equilibrium solution, modal analysis, time integra-
tion, optimization are examples of analysis processes which,
in case of complex MBS, must be performed numerically via
specific algorithms. All of these numerical processes require
a repeated evaluation of the model, often more than a mil-
lion times in a time integration or optimization process. This
means that, whatever the chosen formalism and the available
computer resources, the computation of the model must be
as efficient as possible.

1.2 Numerical versus symbolic implementation

The classical way of implementing these two phases, mod-
eling and analysis, in a computer program is to do so in a
purely numerical manner. Although this is mandatory for the
analysis phase, it is not the only possibility for the modeling
phase.

Before thinking about generating it automatically using a
computer, the most natural way to model a system such as
that of Fig.1, is to do it manually– using a pen or some
general purpose program – on the basis of a given formal-
ism (Newton/Euler equations, Virtual Work Principle, etc.).
While appearing to be archaic in the computer era, and not
always reliable, this method is still used for simple systems
, simplified models and, hopefully, for training undergrad-
uate students dealing with Newtonian mechanics. Although
it is subject to human error, manual generation often yields
optimized mathematical equations, in terms of arithmetical
and trigonometrical expressions: this remark is fundamental
in the context of symbolic generation.

Numericalgeneration means that, each time a computation
is required by some analysis process, the model is rebuilt by
numerous calls of subroutines, each involved in some spe-
cific parts of the equations or specific vector/tensor opera-
tions (library subroutines). This multitude of subroutines is
the consequence of the universal nature of multibody pro-
grams, and the multiple calls are partially responsible for the
heaviness of the numerical generation, compared to manual
generation. Experiments in multibody dynamics show that
for most applications, many data values, e.g. components of
geometrical vectors, inertia parameters, joint velocities, etc.,
are simply equal to zero. All these zero quantities are treated
in a numerical process in the same way as the non-zero ones:
a manual generation of the model would eliminate all the
unnecessary arithmetical operations beforehand, yielding an
optimal form of the equations of motion.

Symbolicgeneration of multibody models tries to take ad-
vantage of both the numerical and manual techniques. So-
called symbolic multibody programs manipulate only arith-
metical operators (+, ., ., /) and strings of alphanumeric char-
acters (mi, qdi, di j, . . .) to generate – in a set of files –
the analytical form of the equations using a desired syntax
(e.g. C, Java, Fortran, MATLAB, etc.). For a given multi-
body application, this symbolic generation is performed only
once, as in manual generation. From the multibody model-
ing point of view, these symbolic generators exhibit the same
level of generality as their numerical competitors in the sense
that they can handle systems with any topology and contain-
ing several degrees of freedom. However, they allow drastic
simplifications, from the most trivial (addition/multiplication
by zero) to the most complex ones (simplification of long
trigonometric expressions). Comparison tests (Samin and
Fisette, 2003) showed that, all other things being equal, a
symbolic multibody model performs a time simulation be-
tween five and ten times faster than a purely numerical one.
This is not at all negligible. This speed enhancement moti-
vated the development of symbolic multibody codes in the
eighties since computers were at that time quite inefficient
in simulating even medium-sized systems (around 10 d.o.f.).
The computational superiority of the symbolic approach still
remains attractive since the exponential increase in modern
computer performances naturally provides the opportunity
to investigate larger systems or more sophisticated models
(Samin and Fisette, 2003).

More recently, another interesting aspect of the symbolic
approach has emerged in the framework of the analysis of
hybrid mechatronic systems involving enlarged multibody
models (i.e. including electrical actuators, hydraulic devices,
etc.) and requiring enlarged analysis (control, optimization,
etc.). Indeed, since symbolic multibody programs clearly
separate the modeling part from the analysis process, it is
quite straightforward to extract the symbolic model in order
to export it towards another environment (e.g. for control or
optimization purposes). In other words, symbolic multibody
models are portable, and this is very attractive for the analy-
sis of multiphysics applications (Samin et al., 2007).

1.3 State-of-the-art

An interesting state-of-the-art of multibody symbolic soft-
ware is proposed in (Kurz et al., 2010). This paper presents
the new features of the research software Neweul-M2 (in-
volving Maple and MuPad algebra symbolic engines), suc-
cessor of the Neweul program developed at the end of the
seventies and which is one of the first symbolic computer
implementation.

The common denominator that emerges when analyzing
and comparing multibody symbolic software is their intrinsic
versatility in terms of:
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– Model type and underlying formalisms (inverse or di-
rect models, kinematic, dynamic equations, sensitivity
matrices, etc.).

– Generated languages (Fortran, C, Java, Matlab, etc.).

– Coupling with other engineering environments (Matlab,
Simulink, Comsol, etc.).

In addition to this, they all take advantage of modern lan-
guages (e.g. Java) and graphical interfaces (GUI, CAD) for
data introduction and results presentation. This aspect, which
is naturally stressed for visibility or commercial purposes, is
far from being trivial in our discipline. Indeed, the large va-
riety of mechanical devices in the three-dimensional space
(e.g. joints with multiple d.of. possibly constrained) and of
force laws (e.g. issuing from friction, pneumatic pressure or
even look-up table, etc.) which is specific to MBS, defini-
tively requires a high-level reflexion to make a general pur-
pose program both flexible, user-friendly and efficient. With
respect to this, a particular attention has been paid to ROBO-
TRAN to preserve a good equilibrium between the user lee-
way and the automated processes (see Sect.4).

Naturally guided by specific educational objectives, re-
search topics and/or industrial projects and collaboration op-
portunities, symbolic programs have their own specificities
and have evolved in different directions.

In short, Maplesim (successor of DynaFlexPro) focuses on
graphical way of modeling, the linear graph theory being at
the root of the approach (Shi and McPhee, 2000). As simula-
tion engine, it uses Maplesoft, a world leader in mathematical
and analytical software. Maplesim is able to deal with rigid
and flexible MBS and, thanks to the graph approach, is in-
trinsically well-suited to deal with multiphysics applications.

The research software Neweul-M2 (Kurz et al., 2010) is
based on the Newton-Euler equations and on the virtual work
principle to generate the differential [differential/algebraic]
equations of motion of open-loop [closed-loop] systems, via
the state-of-the-art computer algebra systems Maple or Mu-
pad.

MOBILE (Kecskeḿethy, 1993) was developed by A.
Kecskeḿethy in the nineties to model multibody mecha-
tronic systems using an original object-oriented approach. In
particular, the underlying formulation is able to provide an
analytical closed-form solution for most of 3-D loop con-
straints, on the basis of the so-called kinematic pair approach
(Kecskeḿethy et al., 1997).

Fast simulation is at the root of the SD/FAST program,
providing the equations as C or Fortran source code, which
can be compiled and linked into any computers environment
to perform real time simulation on standard computers.

Carsim (and all its vehicle companion programs) is the
successor of Autosim (developed by M. Sayers) and clearly
focuses on vehicle dynamics (race cars, passenger cars,
trucks, etc.). It is based on a Lisp symbolic multibody pro-

gram to generate the vehicle equations of motion in symbolic
form for real-time simulation purpose.

MotionGenesis, the successor of the symbolic program
Autolev (developed by Th. Kane), is scientist-oriented, the
user being clearly involved in the model generation. The de-
velopers also emphasize the high performances of the pro-
gram in terms of code compactness and time simulation.

As regards ROBOTRAN, the purpose of the present paper
is to highlight the recent developments and features of the
program, not only in terms of modeling features and compu-
tational performances but also by referring to the flexibility
of the approach for educational, research and industrial pur-
poses.

In Sect.2, the ROBOTRAN underlying formalisms are
briefly reviewed; more details can be found in (Samin and
Fisette, 2003). Section3 presents the symbolic capabilities
which highly takes advantage of the recursive nature of the
formalisms to generate the equations in compact form. In
particular, the recent developments of the symbolic engine
allow ROBOTRAN to generate symbolically the dynamic
model and the sensitivity equations of very large MBS with
closed-loop constraints. In Sect.4, the ROBOTRAN user en-
vironment is shortly described as the latter is really part of
multibody program appeals, considering the large variety of
possible systems to analyses. Some recent applications will
be presented in Sect.5 before concluding.

2 ROBOTRAN formalisms

Before presenting the symbolic engine and the advanced fea-
tures of the program, it is necessary to establish the nota-
tions and to summarize the underlying formalisms. This is
the purpose of the present section. More details can be found
in Samin and Fisette(2003).

2.1 Dynamics of tree-like multibody systems

Initially developed for Robotic applications (Maes et al.,
1990)1, the formalisms underlying ROBOTRAN are based
on the use ofrelative joint coordinates. As usual in this
case, equations are firstly established for a tree-like struc-
ture (i.e. with no explicit constraints). Constrained systems
(i.e. containing loops of bodies or user constraints) are mod-
eled by first restoring a tree-like structure whose dedicated
formalisms are thus necessary for any kind of MBS.

2.1.1 Direct dynamics

To predict the motion of a MBS, thedirect dynamicsof MBS
(see Fig.1) is required to compute the generalized accelera-
tionsq̈ (joint accelerations) for a given configuration (q, q̇) of
the MBS to which forces and torques are applied.

1ROBOTRAN stands for “ROBOt TRANslator”.
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Figure 2. Tree-like versus Closed MBS.

In a synthetic form, the so-calledsemi-explicitdirect dy-
namics model reads:

M(q, δ)q̈+ c(q, q̇, δ, f r, tr,g) = φ(q, q̇) (1)

or, in anexplicit form:

q̈= f (q, q̇, f r, tr,φ,δ) (2)

to be solved with respect to ¨q. In case of the semi-explicit
form (1), this can be performed via the Cholesky decompo-
sition of mass matrixM. In the previous equations:

– M [n ·n] is the generalized mass matrix of the system
(which is symmetric and positive definite),

– c [n ·1] is the non linear dynamic vector which contains
the gyroscopic, centrifugal effects as well as the con-
tribution of gravityg, external resultant forcesf r and
torquestr,

– q [n ·1] denotes the relative generalized coordinates,

– δ [10n ·1] gathers together the dynamic parameters of
the system (body masses, centers of mass location and
the six components of body tensors inertia

– φ [n·1] represents the generalized joint forces (torques):
their explicit computation is typical in relative coordi-
nate formulations, the reason being strongly related to
robotic applications and inverse dynamics issues.

To obtain the above models, the symbolic engine of ROBO-
TRAN implements several formalisms2.

The semi-explicit form (1) is obtained via the so-called
Newton-Euler recursive algorithm3 with mass matrix extrac-
tion (Samin and Fisette, 2003).

The explicit direct dynamics model (2) is symbolically
generated

2Although only the recursive ones are available from the web
interface.

3For which lots of declination exist in the literature.

– either via the so-calledOrder-N formulation, inspired
from (Schwertassek and Rulka, 1989), which requires
three recursive steps to get the acceleration with an
O(N) complexity only

– or via the previous Newton-Euler recursive algorithm
including a fully symbolic Cholesky decomposition of
the mass matrix (Postiau et al., 2001).

In terms of equations complexity (i.e. the number of arith-
metical operations versus the number of d.o.f.) to produce the
generalized accelerations ¨q, a detailed comparison between
formalisms in relative coordinates has indicated the obvi-
ous superiority of the recursive formulations with respect the
the non-recursive one, and a certain competition between the
Order-N and the Newton/Euler recursive algorithms (Samin
and Fisette, 2003). The latter is surprisingly more efficient –
although having anO(N)2+O(N)3 complexity – for most of
practical applications dealing with rigid bodies.

2.1.2 Inverse dynamics

The inverse dynamicsof a multibody system is the computa-
tion of the generalized joint forces (torques)φ to be applied
to the joints for a given configuration (q, q̇, q̈) of the system
to which external forces and torques are applied:

φ = f (q, q̇, q̈, δ, f r, tr,g) (3)

in which the dimension ofφ andq are equal for a fully actu-
ated system.

Inverse dynamic models (3) are typically used in robotics
to control the actuator torquesφ when following a desired
trajectory (q(t), q̇(t), q̈(t)), in biomechanics to predict the net
torque in the human body joints when walking or jumping,
etc.

Equations (3) are generated in ROBOTRAN via both non-
recursive (Virtual principle) and recursive (Newton/Euler)
formalisms; the latter, being implicit with respect to the ac-
celerations ¨q, has anO(N) complexity.

2.1.3 Reaction dynamics

The reaction modelis a particular inverse model which is
also of practical use in robotics. It consists in computing the
components, in the inertial frame, of the vector reaction force
Fr and torqueTr at a reference point of the bed-plate of the
robot. Defining the following [6·1] column vector,

φr =

(
Fr

Tr

)
(4)

the inverse reaction model reads:

φr = φr (q, q̇, q̈, δ, f r, tr,g) (5)

To compute it, ROBOTRAN automatically inserts 6 locked
degrees of freedom (3 translations followed by 3 rotations)
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between the inertial base and the first body of the MBS.
Then, using the Newton/Euler recursive algorithm, the dy-
namic equations of (only) these joints are symbolically gen-
erated to obtain (5).

The ROBOTRAN reaction model has been successfully
used to identify dynamic parameters of robots, by establish-
ing the relationship between [a set of] exciting trajectories
and the reaction forces and torques: the main advantage with
respect to an inverse dynamics approach relates to the ab-
sence of the joint friction forces which cancel each other out
in (5) by the action/reaction principle (Chenut et al., 2002).

2.2 Dynamics of constrained multibody systems

2.2.1 Direct dynamics

Dynamics and constraints equations

In reality, most multibody applications contain loops of bod-
ies (parallel robot, robotical orthesis, railway bogie, etc., as
shown in Fig.3) which impose the generalized joint coor-
dinatesq to satisfy algebraic constraints at any time, de-
notedhloop(q) = 0. Constraints can result from other physical
phenomena (e.g.: geometrically constrained motion, rolling
without slipping condition, etc.): those will be referred to
user constraints and denotedhuser(q) = 0. Gathering thesem
constraints together, we can write:

h(q) =

(
hloop(q)
huser(q)

)
= 0 [m·1]

In order to fully describe the system, these constraints and
their first and second time derivatives must be added to the
equations of motion4, in which constraint forces are intro-
duced via the well-established Lagrange multipliers tech-
nique:

M(q) q̈+ c(q, q̇, f r, tr,g) = φ(q, q̇)+ Jtλ (6)

h(q) = 0 (7)

ḣ(q, q̇) = J(q)q̇= 0 (8)

ḧ(q, q̇, q̈) = J(q)q̈+ J̇q̇(q, q̇) = 0 (9)

where:

– J = ∂h
∂qt denotes the constraint Jacobian matrix (dimen-

sion: [m·n]),

– J̇q̇(q, q̇) [m·1] is the quadratic term (expression in ˙qi q̇ j)
of the constraints at acceleration level (dimension: [m·
1]),

– λ represents the Lagrange multipliers associated with
the constraints (dimension: [m·1]).

4 In which, for legibility reasons, we will no longer indicate the
dependence with respect to the dynamic parametersδ.

Coordinate partitioning reduction

Various methods can be used to solve system (6–9). Among
these, one can opt for a full reduction of the system to a
purely differential form, which can be obtained by means of
the Coordinate Partitioning technique(Wehage and Haug,
1982). The Jacobian matrixJ is assumed to have full rank
m. In this case the constraintsh(q) = 0 are independent and
m generalized coordinates can be locally expressed as func-
tions of the (n−m) others. In this way, it becomes possible
to reduce the original DAE5 system (6–9) to a set of (n−m)
differential equations (ODE)6 in those (n−m) independent
coordinates. This reduced set will represent the equations of
motion of the constrained multibody system, where (n−m)
also corresponds to its number of degrees of freedom.

Let us summarize the steps required to obtain these equa-
tions of motion. After reordering the vector of generalized
coordinatesq (and the columns of the constraint JacobianJ),
we can perform the following partition:

q=

(
u
v

)
; J =

(
Ju Jv

)
(10)

whereu denotes the subset of (n−m) independentcoordinates
andvdenotes the subset ofdependentcoordinates. When cor-
rectly choosing the subsetv, the m by m matrix Jv will be
regular. By “correctly”, we mean that, to establish this parti-
tioning for a given application, we can rely:

– on an intuitive reasoning, based on the system config-
uration (e.g. for a planar slider-crank mechanism, the
crank rotation can be chosen as the independent vari-
ableu whatever the crank position),

– on the LU factorization of thefull Jacobian matrixJ(q),
with column permutation on the basis of the largest
pivot. The resulting left [m·m] square block will be the
“best” candidate.

Once the coordinate partitioning is established, the reduction
method simply uses matrix permutations and operations to
produce the final system. Let us first partition the generalized
mass matrixM and the vectorc according to the coordinate
partitioning (10):(

Muu Muv

Mvu Mvv

)(
ü
v̈

)
+

(
cu

cv

)
=

(
φu

φv

)
+

(
Ju

t

Jv
t

)
λ (11)

where Jv
t refers to the transpose of matrixJv. Since this

matrix is regular, eliminating the unknownsλ using the lower
part of system (11) produces:(

Muu Muv

) ( ü
v̈

)
+ Bvu

t
(

Mvu Mvv

) ( ü
v̈

)
(12)

+cu+ Bvu
tcv = φu+ Bt

vuφv

5For “differential algebraic equations”.
6For “ordinary differential equations”.
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Figure 3. Closed-loop MBS (ROBOTRAN applications).

where we define the so-called coupling matrix:Bvu
∆
=

− (Jv)
−1 Ju. The algebraic constraints have to be solved in

order to eliminate the dependent variablesv. While analyt-
ical solutions can exist for specific cases, the algebraic con-
straints (7) are generally nonlinear and require an iterative
procedure to be solved: the Newton-Raphson algorithm –
with possible relaxation – can be used for successive esti-
mations ofv:

vk+1 = vk− (Jv)
−1 h|v=vk (13)

where the right hand side is evaluated forv= vk and the val-
ues ofu corresponding to the instantaneous system configu-
ration.

Using the first (Eq.8) and second derivatives (Eq.9) of
the constraints, the generalized velocities and accelerations ˙v
andv̈ are respectively given by:

v̇ = Bvuu̇ (14)

v̈ = Bvuü+b with b
∆
= −J−1

v (J̇ q̇) (15)

and can also be eliminated from the differential Eq. (13). This
produces the finalreducedsystem:(
Muu+MuvBvu+ Bvu

tMvu+ Bvu
tMvvBvu

)
ü

+
(
Muv+ Bvu

tMvv

)
b+ (cu+ Bvu

tcv)− (φu+ Bt
vuφv) = 0

which can be concisely written as:

M(u)ü+F (u̇,u) = 0 (16)

The set of ordinary differential Eq. (16) constitutes the equa-
tions of motion of the constrained MBS described in terms
of then−m independent generalized coordinatesu.

– v̈ can be computed directly from system (15).

– As regards the Lagrange multipliersλ, the lower part of
Eq. (11) can be used to recover them:

λ = (Jv
t)−1 {Mvuü+Mvvv̈+ cv− φv} (17)

2.2.2 Inverse dynamics

As for tree-like MBS, one can be interested in computing the
value of the joint torques of a closed MBS for a given trajec-
tory (q(t), q̇(t), q̈(t)). This is the case of parallel manipulators

for instance. The coordinate partitioning can also be used to
reduce the inverse dynamic model (3) subject to kinematic
constraints (7).

Let us denoteψ the left-hand-side of Eq. (6). The latter
then reads:

ψ = φ+ Jtλ (18)

Applying the previous coordinate partitioning (q= u,v) to
(18) and recalling the definition of the coupling matrixBvu,
we obtain:

ψu = φu+ Bt
vu(ψv− φv) (19)

To compute the inverse dynamics in a general case, let us first
split the joint generalized forceφ into an active component
φa (corresponding to actuators) and a passive componentφp

(e.g. friction, spring-type law, etc.):

φ = φa+ φp (20)

Assuming that the actuators are located on each independent
jointsu (which also assumes that there are as many actuators
as degrees of freedomn−m),

φa =

(
φa

u
0

)
, (21)

the inverse dynamics (19) becomes:

φa
u = ψu− φ

p
u+ Bt

vu(φ
p
v −ψv) (22)

In practical situations, actuators are not necessary located on
the independent jointsu, because the{u,v} partitioning re-
sults from a numerical requirement (matrix conditioning) and
not from physical considerations. However, nothing prevents
us from considering two distinct partitioning inside a unique
inverse dynamic model:

– the q= {u,v} partitioning to assemble the MBS and to
solve the constraints (Eqs.13, 14and15),

– a second coordinate partitioning,q= {qa,qp}, based on
the actuated and non actuated joints.

Mech. Sci., 4, 199–219, 2013 www.mech-sci.net/4/199/2013/
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Using this second partitioning, the reduced inverse dynamic
model (22) simply becomes:

φa
qa
= ψqa − φ

p
qa
+ Bt

qpqa
(φp

qp
−ψqp) (23)

which requires that the constraints Jacobian sub-matrixJqp

be regular.
When dealing withoveractuatedMBS for which the num-

ber of actuators (φa) is larger than the number of d.o.f., there
are an infinite number of solutions for the inverse dynamics
which becomes an underdetermined system of the form:

A(q)φa = b(q, q̇, q̈) (24)

whereA is am by n rectangular matrix (withm< n). Addi-
tional criteria are thus needed to solve the system (24). One
can use an optimization process to satisfy some specific crite-
ria as in (Raison et al., 2010) to deal with human muscle over-
actuation, or the Moore-Penrose pseudo-inverse solution:

φa = A+ b (25)

where, assuming rank(A) =m, A+
∆
= At(AAt)−1.

Equation (25) gives the solution of minimum Euclidean
norm ||φ||2. This approach has been successfully used for in-
stance in (Ganovski et al., 2004) to minimize actuator torques
of overactuated parallel robots following trajectories with
singular configurations.

In case ofunderactuatedMBS (i.e. less actuators than
d.o.f.), instead of using the previous inverse models, the di-
rect dynamics form (16) can be used by splitting the inde-
pendent coordinatesu into free variablesuf and actuated vari-
ablesua whose value is constrained according to a prescribed
motion or trajectory. Equation (16) then becomes:(
Muf uf Muf ua

Muauf Muaua

)(
üf

üa

)
+

(
Fuf

Fua

)
=

(
0
λ

)
(26)

This system can be seen as an hybrid direct/inverse model
where the upper part (related to the free motion) refers to
direct dynamics (unknown ¨uf) and the lower part refers to
the collocated inverse dynamics whose unknowns (λ) corre-
spond to the actuated joint forcesφa:

φa =
(
Muauf Muaua

) ( üf

üa

)
+Fua (27)

in which üf must be computed in parallel via a time simula-
tion for instance.

3 Symbolic engine

There do exist commercial general purpose symbolic com-
putation packages like Maple and Mathematica. Why do we
not use these to generate multibody equations ? There are
two main reasons for this.

Figure 4. Tree representation of a mathematical expression.

The first and most important one relates to the amount of
computer memory required to generate medium-sized and
large models (up to 300 d.o.f. in our case) symbolically.

The second reason concerns the possible simplifications of
the symbolic expressions. Although the simplification capa-
bilities of commercial packages are extremely powerful, the
condensation of multibody equations relies on specific rules
which can be applied more easily by developing a dedicated
symbolic program; this was the main motivation to develop
the ROBOTRAN program. Its capabilities in terms of sym-
bolic manipulation are briefly summarized in the following
sub-sections, dealing with:

– expression simplification

– memory allocation

– advanced features

– fully symbolic generation of constrained MBS

– recursive differentiation of multibody models.

3.1 Expression simplification

A mathematical expression in multibody equations uses sim-
ple arithmetical operators+,−, ·, /, (),= and functions: mainly
sin() and cos(), occasionally: sqrt(), atan(), ....

Let us for example consider the following expression

2 ·a−g · cos(q1+q2) (28)

which, when applying mathematical priority rules, is equiv-
alent to

(2 ·a)− (g · (cos(q1+q2))) (29)

This expression can be represented by the tree shown in
Fig. 4. For instance, the second multiplication is an expres-
sion whose nature is· and points towards two arguments: the
expressionsg and cos(). In a tree representation, the leaves
represent alphanumeric symbols, e.g. 2, a, g, ... in example
(28). They are also considered as expressions (or “leaf ex-
pressions”) but they have no sub-expression to which they
point: they simply contain the string they represent.
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The tree representation and the dynamic increase in size of
the expressions during the elaboration of the equations leads
us to represent an expression by a C-structure,dynamically
generated and handled viapointers. At the root of the pro-
gram, there is the C-structureexpressionwhich contains – at
least – the following fields:

– thenatureof the expression (+,−,string, etc.),

– the address(es) (i.e. pointers) of theargument(s) to
which the expression points: these arguments are ei-
ther strings – for a leaf expression – or other expres-
sions which have been created via a previous dynamic
memory allocation. To ensure the basic level of sym-
bolic simplification (i.e. expressionc+a+b−a replaced
by c+b), two ordering rules are used.

The first one re-organizes a given expression on the basis of a
so-calledmultibody priority (e.g. a mass symbol has a higher
priority than a force symbol but has a lesser priority than a
coefficient), as illustrated in the following example:

4<mi < di j < F j
ext< q̇i < b · c< (a−d) (30)

In case of equalmultibody priority, a (sub-)expression is then
re-organized according to the lexicographical sequence of the
ASCII table of characters, as for instance:

K ii <mi ; 2< 3; dii +di j < dii +d jk; etc. (31)

When dealing with a given symbolic expression (whatever
its length), the symbolic engine (layer 1) of ROBOTRAN
recursively uses the above priority rules to ensures that the
final form of any expression will be purged of consecutive
equal terms – or sub-expressions – with opposite signs.

3.2 Trigonometric simplification

A revolute joint i, with a generalized joint coordinateqi ,
of a multibody system induces an elementary rotation ma-
trix which contains the trigonometric functions cos(qi) and
sin(qi). The evaluation of rotation matrices between any pair
of bodiesi and j, such thatj is a descendant ofi in the MBS
structure, is obtained by multiplying the elementary rotation
matrices associated with each revolute jointk belonging to
the kinematic chain{i, i +1, i +2, ..., j −1, j} for instance:

Rj,i = Rj, j−1 Rj−1, j−2 ...Ri+1,i (32)

Thus, an optimized trigonometric engine is required to con-
densate trigonometric expressions like

K212·qpp8 · (C2 ·C2 ·C3 ·S4+S2 ·S24 (33)

−S2 ·S34·S5+S2 ·S2 ·C3 ·S4)

in which C j, S k and S jk represent cos(q j), sin(qk) and
sin(q j +qk) respectively.

The ROBOTRAN trigonometric simplification process,
which is performed on line (i.e. it is not a post-process), has
two main levels. The first and lowest one systematically de-
tects and performs the fundamental trigonometric simplifica-
tions according to well-known formulae. For instance, let us
consider a symbolic expressiona:

– if a=C1 ·C1+S1 ·S1, the process returns 1,

– if a= 2 ·C1 ·S1, trigo(a) the process creates and returns
the auxiliary variableS11, which stands for sin(2q1),

– if a=C1 ·C2−S1 ·S2, the process creates and returns
the auxiliary variableC12, which stands for cos(q1+q2),

– etc.

while the previous level is able to detect and simplify ele-
mentary trigonometric formulae, it is not able to deal with
expressions like

C2 ·C4 ·C56·C56·S8+C2 ·C4 ·S56·S56·S8

+C2 ·S4 ·S56·C8+S2 ·C4 ·S56·C8 (34)

−S2 ·S4 ·C56·C56·S8−S2 ·S4 ·S56·S56·S8

for which judicious groupings and factorings must be per-
formed in order to make a maximum of trigonometric for-
mulae appear, which can then be simplified. This is the pur-
pose of the second level of the process. The following ex-
amples illustrate the power of the method. The trigonometric
expressions are generated by a direct model (of a railway bo-
gie) based on the virtual power principle (C j, S k and S jk
represent cos(q j), sin(qk) and sin(q j +qk) respectively):

– C2 ·C4 ·C56·C56·S8+C2 ·C4 ·S56·S56·S8
+C2 ·S4 ·S56·C8 +S2 ·C4 ·S56·C8
−S2 ·S4 ·C56·C56·S8−S2 ·S4 ·S56·S56·S8
becomes:C24·S8+S24·S56·C8

– C2 ·S2 ·C4 ·C56·C56·S8+C2 ·S2 ·C4 ·S56·S56·S8
+C2 ·S2 ·S4 ·S56·C8 +S2 ·S2 ·C4 ·S56·C8
− S2·S2·S4·C56·C56·S8− S2·S2·S4·S56·S56·S8
becomes:S2 · (C24·S8+S24·S56·C8)

3.3 Recursive scheme condensation

In multibody dynamics, arecursive schemedenotes any for-
malism (kinematic, dynamic, direct, inverse, etc.) in relative
coordinates, written as one or more algorithmic loops cover-
ing the MBS from the base body to the terminal bodies. For
instance, the so-called Recursive Newton Euler formalism
represents a recursive scheme consisting of two algorithmic
loops: one for the forward kinematics (fori = 1 : Nbody), the
second for the backward dynamics (fori = Nbody : 1). The so-
called Order-N formalism (Schwertassek and Rulka, 1989) is
also a recursive scheme which performs three recursions: for-
ward kinematics, backward dynamics and forward kinetics to
directly obtain the explicit direct dynamics (2).
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In such formalisms, the relation which expresses – for in-
stance – the angular velocityω3 of a given body 3 with re-
spect to its parent body 2,ω2, is written in vector form

ω3 = ω2+Ω23 (35)

whereΩ23 stands for therelative angular velocity between
body 2 and 3.

A recursive ROBOTRAN implementation of the vector
Eq. (35) is given hereafter for a specific MBS:

OM13 = qd(3)+OM12

OM23 = OM22·C3+OM32·S3

OM33 = −OM22·S3+OM32·C3 (36)

where OMi j denotes thei-th component of thej-th body an-
gular velocity in bodyi fixed frame.

The two above equations clearly highlight therecursive
nature of the analytic Eq. (35) on the one hand and of the
corresponding symbolic expressions (36) on the other hand.

Via this very simple example, one can easily extrapolate
the reasoning to a full formalism in which such a recursivity
between adjacent bodies can apply to position, velocity, ac-
celeration, forces, torques, etc. to end up in the final model
(Eqs.1 and2 for instance). The ROBOTRAN implementa-
tion is based on this technique.

Although recursive formulations intrinsically have a com-
pact form (when compared within extensoformulations
which do not exploit the above-mentioned recursivity (Samin
and Fisette, 2003), they paradoxically perform superfluous
evaluations: depending on the type and succession of joints
of the application, some components of the vector compo-
nents (in Eq.36 for instance) are superfluous for the final
scalar form. Whereas a general purpose multibody program
which generates the modelnumericallyis not able to detect
these superfluous equations, a symbolic multibody program
can do so. Thus, in addition to removing useless terms in
equations (see the previous sections),entire equations can
be detected symbolically as being superfluous (up to 30 %
for direct dynamics!). The ROBOTRAN recursive conden-
sation process is based on a linked-list (of equations) and
C-pointers, and removes those equations before “engraving”
the final result. The process is illustrated in Fig.5 via an
academic example which computes a given resultR from
dataA,B,C,D via a recursive approach: symbolic equations
B1= . . ., B3= . . ., D1= . . . are clearly useless for the result
and can be completely disregarded and removed from the list
before printing the equations.

3.4 Memory allocation

As mentioned above, the amount of computer memory re-
quired by symbolic programs exponentially increases when
manipulating large expressions or system equations: the gen-
eration can simply fail or require a very long computer time.

Figure 5. Recursive scheme condensation.

Symbolic manipulation requires dynamic memory alloca-
tion to create and store new expressions (C-structures in our
case). The symbolic process briefly described above, which
recursively re-organizes any new expressions in accordance
with the ordering rules, can generate in the memory thou-
sands of auxiliary expressions which are not necessary in the
final tree representation of a given (complex) expression. Ex-
periments showed that, whatever the multibody formalism
used, these short-lived expressions induced by symbolic ma-
nipulations represent more than 90 % of the whole set of ex-
pressions generated! This explains why symbolic programs
can lead to an explosive use of computer memory. To solve
this delicate problem, one may try to cut long equations into
segments and evaluate and print them separately; then, after
dealing with each segment, we would clear out all the gen-
erated expressions from the memory. By experience, this so-
lution is mediocre because it strongly degrades the symbolic
engine capabilities in terms of simplification.

To solve this problem, the following three elements were
introduced into ROBOTRAN.

1. When generating a symbolic equation, in order to keep
track of each new symbolic expression (complex or not,
short-lived or not) created by the generation process,
the address (pointer) of this expression is systematically
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Figure 6. Dynamic linked list of expressions.

Figure 7. Locking an expression in memory.

stored in adynamic linked-listwhich grows as and when
it is needed, as shown in Fig.6.

2. In order to protect any expression (e.g.A, a2, cos(),
’+’, etc.), we add to the corresponding C-structure,
a boolean field “lock”. The value lock= TRUE tells
ROBOTRAN that the corresponding expression can-
not be removed from memory, whereas lock= FALSE
states that it can. FALSE is the default value.

3. We introduce the procedure exprlock(E) to lock a given
expressionE, i.e. by setting to TRUE the “lock” field
of each node belonging to thefinal tree of expression
E. The procedure is thus intrinsically recursive as illus-
trated in Fig.7.

By thus locking a given equationE in its final, simplified
form, we do not lock the intermediate “short-lived” expres-
sions (more than 90 %!) created during the evaluation ofE,

Figure 8. Memory allocation for a ROBOTRAN generation pro-
cess.

those which do not contribute to its final tree: for these ex-
pressions, “lock” keeps its default value FALSE. Thus, to
free the memory in an optimal way, once the evaluation of
E is finished, and its tree has been purged of superfluous op-
erations, ROBOTRAN:

1. recursively protects the final form of expressionE
(lock(E)),

2. frees the memory by removing every expressionx
which has not been locked by covering the list of Fig.6
from tail to head. Each element of the list is also re-
moved to end up with an empty list. . . ready for the
evaluation of a subsequent equation.

Thanks to this methodology, the memory space required by
and during a ROBOTRAN process is illustrated in Fig.8 and
has thus a “toothed” shape, rather than a monotonic growing
one as in classical symbolic packages. The maximum mem-
ory space (SPmax) is reached by the greediest equation.

This freeing process is of the utmost importance in multi-
body dynamics since it allows us to eliminate the most crit-
ical bottleneck (i.e. the memory space) of the generation of
large multibody models, up to 300 d.o.f. in our case.

3.5 Advanced features

3.5.1 Fully symbolic generation of constrained MBS

Up to now, the symbolic capabilities of the ROBOTRAN
program were only exploited for generating the dynamics
and kinematics of tree-like MBS: this means that for closed
loop systems (like vehicle suspensions, parallel robots, etc.),
only the main ingredients of Eqs. (6), (7), (8) and (9) were
generated symbolically butseparately. The subsequent coor-
dinate partitioning reduction (16) being performed numeri-
cally. While being far more efficient than a pure numerical
model (Fisette, 1994), we recently noticed that there was
still a lot of superfluous operations in the numerical pro-
cesses underlying the reduction (empty mass and Jacobian
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Figure 9. Closed-loop MBS: fully symbolic generation of the direct
dynamics.

sub-matrices etc.) The latter could be avoided if the symbolic
generation mentioned above would be appliedglobally to the
model, i.e. from the input (u, u̇) to the output (¨u) in case of
direct dynamics of constrained systems (Fisette et al., 2002),
(Poncelet et al., 2010).

Let us rewrite the semi-explicit form (16) in an explicit
way (exactly as the form2) for tree-like MBS) in terms of
the independent accelerations ¨u:

ü= f (u, u̇, f r, tr,φ,δ) (37)

Thanks to the ROBOTRAN symbolic engine capabilities, in
particular in terms of memory requirement (see Sect.3.4), it
is now possible to generate the independent accelerations ¨u
according to (Eq.37) in a fully symbolic manner and in the
form of a uniquefunction (C, Matlab, etc.) which success-
fully computes, as a unique global recursive scheme:

1. the constraints and their solving at position, velocity and
acceleration levels,

2. the external forces and torques (interfaced with possible
external user constitutive equations),

3. the dynamics of the restored tree-like MBS,

4. the reduction and the resolution of system (16) with re-
spect to the generalized accelerations ¨u.

Regarding the constraints solution at position level, despite
robust and appealing formulations (e.g. the kinematic trans-
former technique,Kecskeḿethy et al., 1997), it is not always
possible to solve them analytically via a closed-form kine-
matic solution, because of their inherent nonlinearities. In
case of complex 3-D closed-loop structures, as depicted in
Fig. 3, we must often resort to a numerical iterative process
to converge towards an accurate solution. As far as we are
concerned, the Newton-Raphson algorithm (with possible re-
laxation) has been chosen to solve the constraintsh(q) = 0
(Eq.7) via the necessary iterations on the dependent coordi-
natesv (see Eq.13):

∆vk = (Jv)
−1 h|v=vk (38)

Being a numerical iterative process, it would be illusory to
implement it symbolically. However, it we examine the RHS
of the previous iterative formula, it mainly contains kine-
matic ingredients, namely the constraint Jacobian sub-matrix

[udd, l] = direct_dynamics(u, ud, d) 

/* Recursive Forward Kinematics */ 

wj = wi+ ... 

... 

/* Loop closure */ 

while (norm(h) > e) 

     /* Recursive Contraints Kinematics */ 

    Jjk = Jik+... 

    … 

    Dv = … 

end 

/* Recursive Backward Dynamics*/ 

 Fj = Fi+ ... 

 Lj = Li+ ... 

/* DAE=> ODE Reduction */ 

… 

udd = …  

l = … 

return 

 

 

 

 

 

 

Figure 10. Recursive symbolic computation of the constraints: lo-
cal iterative process.

Jv and the constraints themselvesh(u,v), which are computed
within the recursive generation (see Sect.3.3). Thus, since
the Newton-Raphson algorithm simply amounts to repeat the
evaluation of the RHS of Eq. (38) until convergence, it is
rather straightforward to insert – in the symbolic output file
– suitable statements upstream (e.g.: “while||h(q)|| > ε”) and
downstream (“∆vk = ..., end”) the RHS computation of (38)).
Figure10illustrates this “trick” which has been systematized
in ROBOTRAN when generating the explicit direct model
(37) whose efficiency in terms of CPU time is rather impres-
sive.

The only drawback of this fully symbolic approach, in
comparison with the semi-symbolic one of Sect.2.2.1, lies
in the fact that the{u,v} partitioning must be symbolically
hard-coded in the block of Fig.9. This requires a pre-process
to fix the partitioning via a numerical technique (e.g. a LU
factorization of the Jacobian matrixJ(q) with full pivoting)
which is able to find a robust{u,v} partition and variable per-
mutation.

3.5.2 Recursive differentiation of multibody models

Various numerical analyses require the derivatives of multi-
body (kinematic or dynamic) equations with respect to a
given parameter or variable or a set of those. This is for
instance the case for model linearization, control design,
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deterministic optimization and sensitivity analysis. In the
present section, we will focus on the latter topic to illustrate
the symbolic differentiation process recently implemented in
ROBOTRAN (Poncelet et al., 2010).

Sensitivity analysis of MBS

In the multibody dynamic context, a typical objective func-
tion ψ(p) for sensitivity analysis purpose (seeEberhard,
1996; Ding et al., 2007) can be written as:

ψ(p) =G1(t1,u1, u̇1, p)+

t1∫
t0

F(t,u, u̇, ü, p)dt (39)

in which:

– p denotes the parameter;

– t0 andt1 are the initial and final simulation time;

– G1 refers to the final state (e.g. the configuration at time
t1 of a given body of the system);

– F depends on the dynamic behavior of the system in the
time interval [t0, t1], such as the root mean square (rms)
acceleration of the car driver, the mean power dissipated
at a wheel/ground contact, etc.

For the general objective function (39), sensitivity analysis
consists in computingdψdp , that is:

dψ
dp
=
∂G1

∂u1

du
dp

∣∣∣∣∣
t1
+
∂G1

∂u̇1

du̇
dp

∣∣∣∣∣
t1
+
∂G1

∂p
(40)

+

t1∫
t0

(
∂F
∂u

du
dp
+
∂F
∂u̇

du̇
dp
+
∂F
∂ü

dü
dp
+
∂F
∂p

)
dt

Let us first point out that in our case the only variables are
theindependentcoordinatesu (andu̇). Indeed, the remaining
variablesv (and v̇) have already been eliminated from the
model during the reduction process (from the DAE (6–9) to
the ODE (16) or (37)), v andv̇ being expressed in terms ofu
andu̇ according to the constraints solution.

Within expression (41), the unknown sensitivity matrices
du
dp(t), du̇

dp(t) and dü
dp(t) can be computed via the so-calleddi-

rect method(Eberhard, 1996) which consists in solving the
differential equations for sensitivity matricessimultaneously
with the equations of motion as explained here below.

Semi-explicit approach

Considering the semi-explicit form of the dynamic Eq. (16),
the above sensitivity matrices can be calculated via the fol-
lowing equations in which, for sake of simplicity, we have

definedΓ(u, u̇, ü, δ)
∆
= Mred(u, δ)ü+ Fred(u, u̇, f , δ, p):

Mred
dü
dp
+
∂Γ

∂u̇
du̇
dp
+
∂Γ

∂u
du
dp
+
∂Γ

∂p
= 0 (41)

This equation can be time integrated simultaneously with the
equations of motion (16). The main reason of the “symbolic
versus numerical” benefits (factor 8 to 10) comes more from
the recursivenature of the dynamic equations which is at
the root of the symbolic elimination of useless equations in
ROBOTRAN (see Sect.3.3), than from the symbolic sim-
plification of the expressions themselves. In particular, this
recursivity is fully exploited when computing the explicit
form (37) as stated in Sect.3.5.1.

In view of Eq. (41), the computation ofdü
dp, du̇

dp and du
dp is

required, the first one being the direct result of the model
differentiation, the next two one being obtained via time in-
tegration.

Explicit approach

In view of the complexity of the semi-explicit form (41),
which requires the partial derivative of theΓ term, it is
clear that it would be far more advantageous to compute
the derivativesdü

dp by directlydifferentiating the explicit form
(37):

ü= f (u, u̇, p) ⇒
dü
dp
=

d f
dp

(u, u̇,
du̇
dp
,
du
dp
, p) (42)

Thanks to the – recent – availability of the explicit model
(37) in ROBOTRAN under the form of a fully symbolic
recursive scheme (see Sect.3.5.1), the computation ofdü

dp
will be greatly facilitated, for tree-like as for constrained
MBS: in ROBOTRAN, a direct symbolic differentiation can
be achieved straightforwardly according to (42).

However, as for the model generation, the main complex-
ity comes once again from the constraints at position level
h(q) = 0 (assumed to be previously solved with respect tov).
Without entering into details, the derivative of the dependent
coordinatesdv

dp (and later on, the derivative of the velocities
dv̇
dp) are neededexplicitly to compute the sensitivity model
(42).

Starting from the differentiation of the implicit form of the
constraints (which must be satisfied for any value ofp),

dh
dp
=
∂h
∂p
+
∂h
∂u

du
dp
+
∂h
∂v

dv
dp
= 0, (43)

we can isolatedv
dp,

dv
dp
= −

(
∂h
∂v

)−1 [
∂h
∂p
+
∂h
∂u

du
dp

]
= −J−1

v
∂h
∂p
+ Bvu

du
dp

(44)

Symbolic implementation

Since the symbolic engine of ROBOTRAN (see next section)
blindly differentiates any expression on the basis of recur-
sive chain rules, any expression of the model derivative (e.g.
d f
dp must be the derivative of an “existing” expression in the
model itself (e.g.f ). For the particular case of (44),we can
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observe that it exactly corresponds to the derivative of the
following relation (which is, incidentally, rather similar to
the Newton-Raphson iteration13):

v= −J−1
v h(q) (45)

Indeed, remembering that the constraints are satisfied (i.e.:
h(q) = 0), by differentiating (45), we obtain:

dv
dp
= −J−1

v
dh
dp
= −J−1

v

[
∂h
∂p
+
∂h
∂u

du
dp

]
(46)

which is the desired result (44) associated with the im-
plicit constraints derivation. Sensitivity analysis of large con-
strained MBS (with more than 100 d.o.f.) led us to develop a
specific procedure in ROBOTRAN to symbolically differen-
tiate a given recursive scheme with respect to a given (set of)
parameter(s)p. In the context of differentiation, the equations
produced by a recursive multibody formalism (see Fig.5)
can be advantageously considered as interwoven functions
( f (g(h(...(p)))). However, if the corresponding differentiation
rules are blindly applied to such a recursive scheme, we have
observed that they produce a very large non-optimized sym-
bolic output (e.g.d f

∂p in Eq.42) even for medium-sized multi-
body models: the interest of the recursive computation is thus
completely lost.

Therefore, we take advantage of the condensation proce-
dure described in Sect.3.3to solve this problem. When eval-
uating a given recursive scheme, we assume – a priori – that
each equation depends, explicitly or not, on the set of sys-
tem parameters or variables (e.g.p1, p2, . . . pk) with respect
to which the differentiation must be performed. For instance,
in the following equation:

AUXJ = AUXI +2 ·P

AUXJ explicitly depends on the variableP via the second
term. A priori, it may also depend implicitly onP via the
first term AUXI.

We thus systematically create and evaluate a newrecursive
variable, for instance AUXJP, for thetotal derivative of the
current equation with respect toP

AUXJ P= AUXI P+ 2

even if, in the end, it appears that this new auxiliary variable
is 0 or simply useless. If it is useless, the elimination process
(of Fig. 5) will detect it and remove the corresponding equa-
tion from the list, before printing. Such a technique gives rise
to acompact recursive computationof the derivatives.

To illustrate this, let us consider in (47) and (48), the sym-
bolic evaluation of one elementJ(3,1) of the Jacobian matrix
∂x
∂qt of a position vectorx(q) associated with a kinematic chain
composed of nine joints.

In (47), the classical differentiation rule applied tox(q) is
far more consuming in terms of single operations (it contains
220 multiplications, additions and subtractions) than when

obtained via the proposed recursive total differentiation (in-
volving only 62 single operations).

J(3,1) = q8 · (C1 ·C7 · (−C3 ·S4 ·C5+S3 ·S5)−S1 · (S2 · (S3 ·S4 ·

(−C5 ·C7+S5 ·C6 ·S7)+S7 · (−C3 ·C5 ·C6+S3 ·C4 ·S6))

+C7 · (C2 ·C4 ·C5−S2 ·C3 ·S5))+S7 · (C1 · (C3 ·C4 ·S6

+C6 · (C3 ·S4 ·S5+S3 ·C5))−S1 ·C2 · (−C4 ·S5 ·C6+S4 ·S6)))

+D13·S1 ·S2+D14· (C1 ·S3+S1 ·S2 ·C3)+D15· (C1 ·S3+S1

·S2 ·C3)+D16· (C1 · (C3 ·S4 ·S5+S3 ·C5)+S1 · (C2 ·C4 ·S5

−S2 · (−C3 ·C5+S3 ·S4 ·S5)))+D17· (C1 ·C6 · (C3 ·S4 ·S5

+S3 ·C5)+S1 · (−S2 ·S3 · (C4 ·S6+S4 ·S5 ·C6)+C6 · (C2 ·C4

·S5+S2 ·C3 ·C5))+S6 · (C1 ·C3 ·C4−S1 ·C2 ·S4))+D18·

(C1 ·S7 · (C3 ·S4 ·C5−S3 ·S5)−S1 · (S2 · (S3 ·S4 · (C5 ·S7

+S5 ·C6 ·C7)+C7 · (−C3 ·C5 ·C6+S3 ·C4 ·S6))+S7 · (−C2

·C4 ·C5+S2 ·C3 ·S5))+C7 · (C1 · (C3 ·C4 ·S6+C6 · (C3 ·S4

·S5+S3 ·C5))−S1 ·C2 · (−C4 ·S5 ·C6+S4 ·S6)))+D19· (C1

·S7 · (C3 ·S4 ·C5−S3 ·S5)−S1 · (S2 · (S3 ·S4 · (C5 ·S7+S5

·C6 ·C7)+C7 · (−C3 ·C5 ·C6+S3 ·C4 ·S6))+S7 · (−C2 ·C4

·C5+S2 ·C3 ·S5))+C7 · (C1 · (C3 ·C4 ·S6+C6 · (C3 ·S4 ·S5

+S3 ·C5))−S1 ·C2 · (−C4 ·S5 ·C6+S4 ·S6))); (47)

RO22= S1 ·S2;RO32= −C1 ·S2;RO82= −S1 ·C2;RO92=C1 ·C2;

RO23= RO22·C3+C1 ·S3;RO33= RO32·C3+S1 ·S3;

RO53= −RO22·S3+C1 ·C3;RO63= −RO32·S3+S1 ·C3;

RO54= RO53·C4+RO82·S4;RO64= RO63·C4+RO92·S4;

RO84= −RO53·S4+RO82·C4;RO94= −RO63·S4+RO92·C4;

RO25= RO23·C5−RO84·S5;RO35= RO33·C5−RO94·S5;

RO85= RO23·S5+RO84·C5;RO26= RO25·C6+RO54·S6;

RO36= RO35·C6+RO64·S6; RO27= RO26·C7−RO85·S7;

RO87= RO26·S7+RO85·C7;RL23= RO22·D13; RL24= RO23·D14;

JT341= RL23+RL24;RL25= RO23·D15;JT351= JT341+RL25;

RL26= RO25·D16;JT361= JT351+RL26;RL27= RO26·D17;

RL28= RO27·D18+RO87·q(8);JT371= JT361+RL27;

JT381= JT371+RL28;RL29= RO27·D19;J(3,1)= JT381+RL29; (48)

For larger models and in particular for the explicit direct dy-
namics (37) of constrained multibody systems, the advantage
of the recursive differentiation is amazing. In fact, theexplo-
siveincrease in size of the classical differentiation technique
(based on partial differentiation of interwoven functions) is
quite understandable since it amounts to destroying the re-
cursivity of the original scheme, leading to an in extenso
formulation. Although the proposed recursive differentiation
process is very consuming in terms of both memory storage
and symbolic CPU time – because thousands of “potential”
total derivatives are computed, these drawbacks are negligi-
ble in ROBOTRAN since the storage requirement is drasti-
cally controlled during the symbolic process as explained in
Sect.3.4.

4 ROBOTRAN computer framework

From the practical point of view, modeling a physical sys-
tem using the multibody approach in ROBOTRAN involves
several steps that can be summarized as follows:

– drawing the multibody system, which consists in defin-
ing the system topology (body structure, connecting
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Figure 11. Illustration of the programs composing the ROBO-
TRAN framework.

joints, external/internal force, loop constraints, etc.) and
the numerical data,

– writing the multibody equations, which relies on the
symbolic engine for the equation of motion (using
the Newton/Euler recursive formulation or the Virtual
Power Principle) and requires a user intervention for
specific constitutive law,

– simulating the multibody model, which requires the use
of numerical methods so as to exploit the symbolic
equations (for instance, numerical integration algorithm
for a direct dynamic problem),

– analyzing the multibody simulation results, which needs
efficient tools for presenting numerical results clearly or
producing 3-D animation of the complete system.

In order to go through those various stages, the ROBOTRAN
software is composed of several computer programs that are
strongly related one to each other as illustrated in Fig.11and
explained in the following subsections.

4.1 Drawing the multibody system

The first step of any multibody modeling process consists
in identifying the involved bodies and the joints which con-
nect them. This often requires a “pre-process” engineering
work performed independently of any software. The main
originality of ROBOTRAN is to introduce the system data
and topology as it would be drawn on a sheet of paper using
simple “potato” shapes like in Fig.2. This way of thinking
has guided the design of the graphical editorMBsysPad. It

can be described as a “topology oriented” graphical editor
(instead of a “3-D CAD oriented” editor which comes with
most of commercial multibody programs): it relies on a 2-D
graphical representation which highlights the MBS topology
of the system rather than its 3-D representation. For instance,
Fig. 12 illustrates the MBsysPad 2-D diagram of a 5-point
suspension quarter car model. This 2-D sketch is composed
of several components.

– Bodiesare represented by various 2-D shapes that can
be chosen so as to ensure the readability of the diagram.
Specific points of a body are introduced usinganchor
points(arrows in the 2-D diagram).

– ROBOTRAN defines six simpleJointswith 1 d.o.f.: 3
rotational joints about x-, y- or z-axis and 3 translational
joints along x-, y- or z-axis. Combining several single
joints permits to model any kind of complex joints. For
instance, in Fig.12, the 4 arms are connected by aR1–
R3 joint sequence which represents a universal joint. In
such a way, the relative d.o.f. between two bodies ap-
pear directly and explicitly on the 2-D diagram.

– Links define point-to-point forces between two bodies
(represented by a spring on the 2-D sketch).

– Cuts imposes a constraint between two bodies in order
to deal with system with kinematic loops. For instance,
in Fig. 12, the ball joints between the wheel carrier and
the arms are modeled with aball cut that ensures that
the two connected points always coincide by imposing
3 algebraic constraints.

– External forceor torque can be imposed on the system
(“F” symbol in the diagram).

This 2-D representation gives a straightforward access to the
element properties that can be modified via an edition panel
such as the one appearing in Fig.12(on the right) for editing
the body properties.

This approach, specific to ROBOTRAN, strengthens the
software ergonomics, focusing on the work on the model it-
self, rather than on “cosmetic” features, by making the tree-
like structure of the MBS, loop closure constraints and in-
ternal or external forces appearing clearly and explicitly on
a single view of the system. Nevertheless, a 3-D representa-
tion can also be built in parallel so as to obtain a global view
of the model which may be useful for instance for producing
3-D animation of the simulation results (see Fig.13 which
illustrates the 3-D representation of the 5-point suspension).

4.2 Writing the multibody equations

The process of writing the equations can be divided into two
steps. The first one refers to the symbolic generation of the
equations of motion of the MBS. The second one consists
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Figure 12. Representation of a 5 points suspension model in MBsysPad 2-D diagram.

Figure 13. Representation of a 5 points suspension model in MBsysPad 3-D view.
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in writing constitutive laws which are specific to the appli-
cation, using symbolic ingredients produced by the previous
step.

4.2.1 Symbolic equations

The symbolic equations are generated automatically on the
basis of the symbolic formalism described in Sect.3. Prac-
tically, this symbolic generation process (MBsysTran in
Fig.11) is performed online via the ROBOTRAN web server
and does not require any additional software on the client
computer. The symbolic equations consist in a set of C-code
or M-code functions for calculating the various matrices and
vectors of the equations of motion (i.e., mass matrix, dy-
namic vector, constraint vector, Jacobian matrix, etc. (see
Eqs.1, 5, 18or Eqs.6–9)).

The symbolic engine also generates helpful functions for
specific features such as link forces or external forces. For ex-
ample, for the link forces (i.e. point-to-point internal forces),
a symbolic function calculates all the kinematics of the link
(distance and distance time variation between the connected
points) and performs all the operations required for project-
ing the force into the joint coordinate space. The user can
thus skip this tedious work and concentrate on the tasks spe-
cific to his project.

4.2.2 User equations

For introducing force constitutive laws, ROBOTRAN relies
on an “open approach” in which the user has the freedom
and the responsibility of writing its ownuser equations. For
instance, for the 5-point suspension in Fig.12, the spring-
damper element is model by a link force (i.e., point-to-point
internal force) for which all the kinematics is calculated by
the symbolic process. It remains to implement the suspension
constitutive law which can be a simple linear spring-damper
equation or a more complex law for which the user can bene-
fit of all the functionalities provided by the language chosen
for generating the symbolic files.

This flexible and powerful method applies for writing
force constitutive laws (either internal link forces or external
forces) but also for imposing the trajectory of a joint, adding
specific user constraints or considering additional state equa-
tions for mechatronic MBS.

4.3 Simulating and analyzing the multibody system

In order to analyze the multibody model, all equation files
(symbolic equations and user equations) must be assembled
in a unique program. For this purpose, ROBOTRAN is dis-
tributed with a set of Matlab and C functions which constitute
theMBsysLabenvironment.

4.3.1 MBsysLab modules for Matlab

The symbolic and user functions written in Matlab language
can be used with various modules:

– the coordinate partitioning modulechecks or deter-
mines the choice of dependent and independent vari-
ables (see Sect.2.2.1),

– theequilibrium modulefinds the equilibrium position of
a given system,

– thedirect dynamics moduleperforms a time integration
of the equations of motion,

– the inverse dynamics modulecalculates the joint forces
for a given trajectory,

– themodal analysis moduledetermines the eigen modes
of a linearized multibody model.

This approach is very efficient for the model prototyping
since it allows to benefit of the Matlab language flexibility
and to call functions provided by other Matlab toolboxes. A
module can for instance be called by an optimization algo-
rithm or a user function can call any specific Matlab func-
tion.

4.3.2 MBsysLab for Simulink

MBsysLab also contains modules for building C-code S-
Function in Simulink. In this case, symbolic and user files are
written in C language and compiled into a binary file that is
embedded in a unique Simulink block. It is thus very straight-
forward to incorporate the multibody model in a classical
Simulink block diagram. This is a very powerful way of deal-
ing with control or robotics applications for example. Fur-
thermore, since all the code is compiled, this approach leads
to very high performances in terms of calculation time mak-
ing possible real time simulations or optimization of complex
systems in a user-friendly environment.

Finally, it must be noticed that those modules are not spe-
cific to Simulink and can be combined with a own writ-
ten integration algorithm so as to obtain a simulation tool
completely independent of Matlab/Simulink. Additionally,
the generated code can be transfered to an onboard card for
hardware-in-the-loop control.

5 Illustrative applications

Three applications are shortly described in this section
namely, (i) the performance of a modern car equipped with
the Kinetic™-type hydraulic suspension, (ii) the analysis of
a truck-mounted attenuator and (iii) the modeling of a grand
piano action, to respectively highlight the capabilities (i) to
simulate multiphysics systems with real-time performances,
(ii) to deal with large multibody systems and (iii) to build
complex systems in an open-type environment.
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Figure 14. CAD representation of the front wheel-axle unit of the
modeled Audi A6.

5.1 A modern car equipped with a Kinetic™

H2 suspension

This first application example deals with the modeling of a
full modern car (Audi A6) equipped with multi-link suspen-
sions at front and at rear. Figure14 shows the front wheel-
axle unit consisting of a part of the chassis, the suspension
rods, the dampers, the anti-roll bar, the tie rod and the rubber
bushings at the various connection. From the multibody mod-
eling point of view, this vehicle is a rather complex model
since it involves:

– more than 80 generalized coordinates,

– multi-link suspensions (rear and front), which induce 16
three-dimensional kinematic loops,

– a longitudinallateral wheelground model with saturation
effect.

The symbolic equations of this model have been generated in
C-language and compiled into a Simulink S-Function so as
to perform time-efficient simulation and to easily couple the
mechanical model to a hydraulic model in a second step. A
line change manoeuvre has been simulated by imposing the
motion of the direction rack while the vehicle is running at
10 m s−1. The result have been compared to the ones obtained
with the multibody software S/M. The later relies
on a finite-element numerical approach which is a comple-
mentary solution to the one proposed by ROBOTRAN, open-
ing the way to the coupling of MBS with structural analysis
for instance. As illustrated in Fig.15which shows the crush-
ing of the four suspensions during the line change manoeu-
vre, the two approaches (symbolic generation and relative co-
ordinates for ROBOTRAN, numerical generation and nodal
coordinates for S/M) give similar results which
reinforce the confidence in our model.

The next step has consisted in modeling theKinetic H2
suspension system developed by Tenneco Automotive. This
innovative device consists in replacing the classical hydraulic
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Figure 15. Suspension crushing during a line change manoeuvre.

dampers by double acting cylinders connected together by
two distinct hydraulic circuits. This system breaks the tread-
off between a high roll stiffness and a low warp stiffness, as
demonstrated byDocquier et al.(2010).

From a practical point of view, the hydraulic model, which
involves 22 state equations, has been implemented in C-
language. As illustrated in Fig.16, two options have been
retained for coupling it to the MBS. Firstly, theH2 model
has been implemented as a separated Simulink S-Function
and coupled a posteriori to the multibody model of the car.
Secondly, the hydraulic state equations have been combined
to the mechanical state equations and compiled in a unique
S-Function, giving one monolithic set of equation to the
Simulink time integrator. As shown in Fig.17, the roll an-
gle of the car during the line change manoeuvre is smaller
when the car is equipped with the Kinetic H2 system. Fur-
thermore, the two approaches for coupling the hydraulic and
mechanical models result in exactly the same results. How-
ever, as illustrated in Table1, when using the ode45 time inte-
grator of Simulink based on the Dormand-Prince algorithm,
the strongly coupled permits larger time steps, resulting in a
smaller simulation time. When using the ode15s integrator,
the number of time steps is smaller in the case of the strong
coupling but the simulation time is equivalent while the inte-
grator does not converge in the case of the weak coupling (2
block diagram).

5.2 A truck-mounted attenuator

This project has consisted in testing and modelling Truck
Mounted Attenuators (TMA) made of recycled materials,
proposed by the ArGEnCo Laboratory of the Université de
Li ège (ULg, Belgium). Such a device is used on motorway
in order to protect people on working site from inattentive
drivers. The principle consists in assembling several cubic
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Hydraulic S-FUNCTION

SIMULINK (2 blocks)

Robotran S-Function

F

z, z
.

Robotran + Hydraulic S-FUNCTION

SIMULINK (1 block)

Figure 16. Illustration of the two approaches for coupling the hydraulic and mechanical models. Left: weak coupling using two separated
blocks. Right: strong coupling using one monolithic block.

Table 1. Calculation performance for the line change manoeuvre simulation of the model of the Audi A6 equipped with the Kinetic H2
suspension. The simulation was performed on a computer running with Windows 7 and equipped with an Intel Core 2 Duo CPU (2.53GHz),
4 GB RAM.

ode45 integrator ode15s integrator

weak coupling strong coupling weak coupling strong coupling
(2 blocks) (1 block) (2 blocks) (1 block)

Simulation time 66 s 38 s failed 40 s
Number of time steps 13 754 7946 5767
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Figure 17. Impact of the Kinetic H2 suspension on the roll angle
during the line change manoeuvre.

boxes made of deployed steel containing the recycled mate-
rials compacted to an initial preload. Thanks to experimental
tests performed at the ULg laboratory, an analytic formula-
tion was established in order to describe the various phases
of the material constitutive law: the elastic loading phase,
the plastic loading phase and the elastic unloading phase.
Then, a multibody model of the TMA has been implemented
in ROBOTRAN using a lumped mass approach: each block
is splitted into several bodies linked together by prismatic
joints. The constitutive law is applied via external forces act-
ing on each bodies, following the action/reaction principle.

Figure 18. MBS model of a truck-mounted attenuator (TMA).

By comparing models involving 1, 3 and 10 bodies for one
block, we observe discrepancies during the collision (oscil-
lations) but a good match in terms of maximum decelera-
tion of the impacting mass (600 kg), as illustrated in Fig.19
(more details can be found inAbedrabbo et al., 2011). Also,
comparing those results in terms of the Acceleration Sever-
ity Index (ASI), which is the reference for crash calculations,
shows differences that are lower than 0.4 % between the dif-
ferent models, and 7.4 % with experiments which is really
acceptable.

Afterward, a realistic TMA was designed for absorbing
the shock between a truck and a car running at 90 km h−1 or
a bus running at 70 km h−1. In order to analyse the TMA per-
formance during the collision, the MBS model of the TMA
described above has been used to simulate a longitudinal im-
pact between a car (or a bus) and this TMA carried by a truck,
leading to a model containing more than 300 degrees of free-
dom. The truck, the car and the bus, being more rigid than the
attenuator modules, were modeled as rigid MBS, with artic-
ulated suspension and wheels. Two deformation laws of the
front part of each impacting vehicle (i.e., the car or the bus)
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Figure 19. Influence of the number of bodies used to discretize a
TMA block and comparison with experimental results.

Figure 20. Simulation of the collision of a bus or a car into the
TMA.

have been considered, the second one being stiffer than the
first one.

Several parameters have been investigated such as:

– the influence of the own mass of the TMA blocks on the
ASI measured at the driver head level,

– the influence of the deformation law of the front of the
impacting vehicle,

– the influence of the road adherence conditions which
impact the safety of workers located in front of the
truck.

As an illustrative result, Figs.20 and21 illustrate a typ-
ical ROBOTRAN simulation and the ASI measured during
the crash for various values of the coefficient of friction f
between the ground and the wheels of the truck carrying the
TMA. The impacting vehicle is supposed to slide perfectly
on the ground. The extreme case where the truck is com-
pletely locked on the ground is also considered. It clearly
appears that the ASI is higher for the car than for the bus,
due to its smaller mass. The impact of the friction coefficient
is smaller but the diagram reveals that the truck should have
the possibility to move with respect to the ground.
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Figure 21. Impact of the friction coefficient f between the ground
and the wheels of the truck. The Bus 2 and Car 2 cases correspond
to the simulation of a vehicle with a front deformation law stiffer
than the Bus 1 and Car 1 cases.

Figure 23. Model versus experiment: full system in action.

5.3 A grand piano action

The goal of the underlying project – presently in progress in
close collaboration with the MIM, the Musical Instruments
Museum of Brussels – has a double nature: organological
and didactic. Indeed, using a multibody approach, we have
carried out a virtual demonstrator of a grand piano action
mechanism (see Fig.22) in order to understand, demystify
and parameterize the “from key-to-hammer” transmission,
and especially the double escapement principle patented by
the French Śebastien Erard in 1821. Double escapement ac-
tions allow notes to be repeated more easily than in single
piano actions.

As one might imagine, a particular attention has been
paid to the modeling of the intermittent contacts (they are
twelve in number in the mechanism!) for both the geometri-
cal (shapes) and dynamic (constitutive laws) points of view.

To ensure a reasonable match between the multibody
model and the real mechanism, the force law parameters have
been tuned via experimental validations using a high-speed
camera (2000 black and white frame/sec): they have been
carried out for the whole system in action (Fig.23) or for
some specific sub-systems, like a single oscillating hammer
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Figure 22. Real action mechanism (Left) – Scan of the action (Center) – Multibody model (Right).
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Figure 24. Single (top) versus double escapement (bottom) com-
parison.

(not shown). After identification, a satisfactory correspon-
dence was obtained, considering the objectives of the project.
Let us briefly show and comment on a significant result re-
lated to the comparison between single and double escape-
ment configurations. The analyzed piano action mechanism
is a modern one (Fig.22) with the double escapement sys-
tem, which allows the pianist to repeat a given note with a
shorter stroke (for the key and the finger) and thus at a higher
speed. By virtually “removing” some parts in the model, the
double escapement can be virtually deactivated. To compare
the dynamic capabilities of the two mechanisms, a staccato-
type sinusoidal input with increasing frequency is applied on
the key front. In Fig.24, we plot the vertical distance [m] be-
tween the top of the hammer and the string, versus the blow
frequency [Hz]. This result clearly shows that single escape-
ment is unable to correctly repeat the motion above 34 Hz,
while the original system, thanks to the double escapement
principle, can reach 46 Hz (more details inBokiau et al.,

2012). This kind of result is greatly appreciated by our col-
laborators at the MIM, because such a comparison appears to
be quite instructive and also difficult to observe experimen-
tally.

6 Conclusions

In this paper, the main assets and recent developments of
ROBOTRAN software are reviewed. The symbolic genera-
tion capabilities of the software have been greatly enhanced
to deal with large models (in terms of d.o.f.) whose symbolic
generation requires less than one second via a web server.
The fully symbolic generation of constrained MBS is a new
feature of the program that notably improves the CPU time
performances but, above all, allows us to provide a com-
pletely free-standing symbolic function (in C, Matlab, etc.)
ready for use for various scientific computer environments.
More recently, the recursive symbolic differentiation of MBS
direct dynamics with possible nonlinear constraints has been
implemented and has revealed its superiority with respect to
standard symbolic engines in terms of symbolic simplifica-
tion and equation conciseness. A novel user interface based
on an intuitive 2-D representation of the MBS – the 3-D
representation being automatically constructed in the back-
ground – and the open-type architecture of the program are
presented. Finally, three illustrative applications are briefly
discussed to highlight the capabilities of ROBOTRAN in
building complex and large models and dealing with mul-
tiphysics applications.

For the next future, the main developments will mainly
concern the periphery of the R symbolic generator
because we wish to keep the latter as open as possible for the
user, and to interface the symbolic models with specific ex-
ternal software. These couplings refer to multiphysics mod-
eling (in the continuity of our present research work), the
geometrical and dynamic contact between 3-D profiled bod-
ies with a real-time approach, the coupling with FEM models
(flexible bodies), CFD software (multibody-fluid interaction)
and DEM software (discrete element modelling for granular
materials). As regards flexible bodies, our past investigations
for beams (Fisette et al., 1997) and plates (El Ouatouati et al.,
1999) have shown that in case of small deformations, the
floating-frame approach in relative coordinates was a suit-
able option for symbolic generation, leading to very efficient
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models: the revival of those models is part of our future ob-
jectives for the symbolic core of ROBOTRAN.

Acknowledgements. This research work has been supported by
the Belgian National Fund for Scientific Research (F.R.S.-FNRS)
which is acknowledged.

Edited by: O. Br̈uls

References

Abedrabbo, G., Poncelet, A., Sepulveda, P., Cescotto, S., and
Fisette, P.: Multibody Simulation of a Crash Test Attenuator
Made of Recycled Materials, in: Proceedings of the 17th Inter-
national Symposium on Plasticity & Its Current Applications,
Mexico, 2011.

Bokiau, B., Poncelet, A., Fisette, P., and Docquier, N.: Multibody
Model of a Grand Piano Action Mechanism Aimed at Under-
standing and Demystifying the Escapement Principle, in: Pro-
ceedings of the 2nd Joint International Conference on Multibody
System Dynamics, Stuttgrart, Germany, 2012.

Chenut, X., Fisette, P., and Samin, J.-C.: Recursive Formal-
ism with a Minimal Dynamic Parameterization for the Iden-
tification and Simulation of Multibody Systems. Application
to the Human Body, Multibody Syst. Dyn., 8, 117–140,
doi:10.1023/A:1019555013391, 2002.

Ding, J.-Y., Pan, Z.-K., and Chen, L.-Q.: Second order adjoint
sensitivity analysis of multibody systems described by differ-
ential–algebraic equations, Multibody Syst. Dyn., 18, 599–617,
doi:10.1007/s11044-007-9080-4, 2007.

Docquier, N., Poncelet, A., Delannoy, M., and Fisette, P.: Mul-
tiphysics Modeling of Multibody Systems: Application to Car
Semi-Active Suspensions, Vehicle Syst. Dyn., 48, 1439–1460,
2010.

Eberhard, P.: Analysis and optimization of complex multibody
systems using advanced sensitivity analysis methods, ZAMM
Zeitschrift fur Angewandte Mathematik und Mechanik, 76, 40–
43, 1996.

El Ouatouati, A., Fisette, P., and Johnson, D.: A Fully Symbolic
Model of Multibody Systems Containing Flexible Plates, Non-
linear Dynamics, 18, 357–382, 1999.
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