66 research outputs found

    TaLoS: secure and transparent TLS termination inside SGX enclaves

    Get PDF
    We introduce TaLoS1, a drop-in replacement for existing transport layer security (TLS) libraries that protects itself from a malicious environment by running inside an Intel SGX trusted execution environment. By minimising the amount of enclave transitions and reducing the overhead of the remaining enclave transitions, TaLoS imposes an overhead of no more than 31% in our evaluation with the Apache web server and the Squid proxy

    Glamdring: automatic application partitioning for Intel SGX

    Get PDF
    Trusted execution support in modern CPUs, as offered by Intel SGX enclaves , can protect applications in untrusted environments. While prior work has shown that legacy applications can run in their entirety inside enclaves, this results in a large trusted computing base (TCB). Instead, we explore an approach in which we partition an applica- tion and use an enclave to protect only security-sensitive data and functions, thus obtaining a smaller TCB. We describe Glamdring , the first source-level parti- tioning framework that secures applications written in C using Intel SGX. A developer first annotates security- sensitive application data. Glamdring then automatically partitions the application into untrusted and enclave parts: (i) to preserve data confidentiality, Glamdring uses dataflow analysis to identify functions that may be ex- posed to sensitive data; (ii) for data integrity, it uses back- ward slicing to identify functions that may affect sensitive data. Glamdring then places security-sensitive functions inside the enclave, and adds runtime checks and crypto- graphic operations at the enclave boundary to protect it from attack. Our evaluation of Glamdring with the Mem- cached store, the LibreSSL library, and the Digital Bitbox bitcoin wallet shows that it achieves small TCB sizes and has acceptable performance overheads

    New measurements of thousand-seed weights of species in the Pannonian flora

    Get PDF
    For understanding local and regional seed dispersal and plant establishment processes and for considering the ecotypes and other forms of specific variability, hard data of locally or regionally measured traits are necessary. We provided newly measured seed weight data of 193 taxa, out of which 24 taxa had not been represented in the SID, LEDA or BiolFlor databases. Our new measurements and formerly published data of locally collected seed weight records together covers over 70% of the Pannonian flora. However, there is still a considerable lack in seed weight data of taxonomically problematic genera, even though they are represented in the Pannonian flora with a relatively high number of species and/or subspecies (e.g. Sorbus, Rosa, Rubus, Crataegus and Hieracium). Our regional database contains very sporadic data on aquatic plants (including also numerous invasive species reported from Hungary and neighbouring countries) and some rare weeds distributed in the southwestern part of the country. These facts indicate the necessity of further seed collection and measurements

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

    Get PDF
    Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/ 2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio

    Geomagnetically induced currents: science, engineering, and applications readiness

    Get PDF
    This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the “impact” aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification

    HIV-PDI: A protein drug interaction resource for structural analyses of HIV drug resistance: 2. Examples of use and proof-of-concept

    No full text
    The HIV-PDI resource was designed and implemented to address the problems of drug resistance with a central focus on the 3D structure of the target-drug interaction. Clinical and biological data, structural and physico-chemical information and 3D interaction data concerning the targets (HIV protease) and the drugs (ARVs) were meticulously integrated and combined with tools dedicated to study HIV mutations and their consequences on the efficacy of drugs. Here, the capabilities of the HIV-PDI resource are demonstrated for several different scenarios ranging from retrieving information associated with patients to analyzing structural data relating cognate proteins and ligands. HIV-PDI allows such diverse data to be correlated, especially data linking antiretroviral drug (ARV) resistance to a given treatment with changes in three-dimensional interactions between a drug molecule and the mutated protease. Our work is based on the assumption that ARV resistance results from a loss of affinity between the mutated HIV protease and a drug molecule due to subtle changes in the nature of the protein-ligand interaction. Therefore, a set of patients whose resistance to first line treatment was corrected by a second line treatment was selected from the HIV-PDI database for detailed study, and several queries regarding these patients are processed via its graphical user interface. Considering the protease mutations found in the selected set of patients, our retrospective analysis was able to establish in most cases that the first line treatment was not suitable, and it predicted a second line treatment which agreed perfectly with the clincian’s prescription. The present study demonstrates the capabilities of HIV-PDI. We anticipate that this decision support tool will help clinicians and researchers find suitable HIV treatments for individual patients. The HIVPDI database is thereby useful as a system of data collection allowing interpretation on the basis of all available information, thus helping in possible decision-makings
    • …
    corecore