60 research outputs found

    Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to Nanomaterials

    Get PDF
    Nanotechnologies have reached maturity and market penetration that require nano-specific changes in legislation and harmonization among legislation domains, such as the amendments to REACH for nanomaterials (NMs) which came into force in 2020. Thus, an assessment of the components and regulatory boundaries of NMs risk governance is timely, alongside related methods and tools, as part of the global efforts to optimise nanosafety and integrate it into product design processes, via Safe(r)-by-Design (SbD) concepts. This paper provides an overview of the state-of-the-art regarding risk governance of NMs and lays out the theoretical basis for the development and implementation of an effective, trustworthy and transparent risk governance framework for NMs. The proposed framework enables continuous integration of the evolving state of the science, leverages best practice from contiguous disciplines and facilitates responsive re-thinking of nanosafety governance to meet future needs. To achieve and operationalise such framework, a science-based Risk Governance Council (RGC) for NMs is being developed. The framework will provide a toolkit for independent NMs' risk governance and integrates needs and views of stakeholders. An extension of this framework to relevant advanced materials and emerging technologies is also envisaged, in view of future foundations of risk research in Europe and globally

    Mate choice drives evolutionary stability in a hybrid complex

    Get PDF
    Previous studies have shown that assortative mating acts as a driver of speciation by countering hybridization between two populations of the same species (pre-zygotic isolation) or through mate choice among the hybrids (hybrid speciation). In both speciation types, assortative mating promotes speciation over a transient hybridization stage. We studied mate choice in a hybrid vertebrate complex, the allopolyploid fish Squalius alburnoides. This complex is composed by several genomotypes connected by an intricate reproductive dynamics. We developed a model that predicts the hybrid complex can persist when females exhibit particular mate choice patterns. Our model is able to reproduce the diversity of population dynamic outcomes found in nature, namely the dominance of the triploids and the dominance of the tetraploids, depending on female mate choice patterns and frequency of the parental species. Experimental mate choice trials showed that females exhibit the preferences predicted by the model. Thus, despite the known role of assortative mating in driving speciation, our findings suggest that certain mate choice patterns can instead hinder speciation and support the persistence of hybrids over time without speciation or extinction

    Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish

    Full text link

    Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring

    Get PDF

    Understanding and monitoring the consequences of human impacts on intraspecific variation

    Get PDF
    Abstract:Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation

    Peripheral INSL3 concentrations decline with age in a large population of Australian men

    No full text
    The definitive version is available at www.blackwell-synergy.comThe novel peptide hormone insulin-like peptide 3 (INSL3) is a major secretory product of the Leydig cells of the testis, and in adult men is secreted into the blood, giving rise to circulating concentrations ranging from 0.5 to 2.5 ng/mL. We studied a large randomly recruited cohort of 1183 men from South Australia, comparing serum INSL3 concentrations with age, and a variety of endocrine, cognitive and morphological parameters. While INSL3 concentration declines significantly (p < 0.001) and continuously with age from 1.29 ± 0.47 ng/mL in young men (age 35–44 years) to 0.79 ± 0.39 ng/mL in the age group 75–80 years, there is no correlation with testosterone or components of the hypothalamo-pituitary-gonadal (HPG) axis, independent of age, nor with any other parameter measured, including thyroid or prostate status and obesity. For men exhibiting normal follicle stimulating hormone (FSH) and high luteinizing hormone (LH) levels, there was a significant inverse correlation with plasma oestradiol. Unilaterally orchidectomized men had INSL3 values intermediate between intact men and anorchid subjects, and showed inverse correlations (p < 0.001) between INSL3 and FSH or LH concentrations, which were independent of age. Taken together, the data show that INSL3 is an independent measure of Leydig cell function (quality and number), which appears to be independent of acute control via the HPG axis. Its decline with age reflects a decline in the properties of the Leydig cell population only, and emphasizes a gonadal component in the age-related decrease in androgen production.Ravinder Anand-Ivell, Jessica Wohlgemuth, Matthew T. Haren, Perdita J. Hope, George Hatzinikolas, Gary Wittert, Richard Ivel

    Life-history genomic regions explain differences in Atlantic salmon marine diet specialization

    Get PDF
    1. Animals employ various foraging strategies along their ontogeny to acquire energy, and with varying degree of efficiencies, to support growth, maturation and subsequent reproduction events. Individuals that can efficiently acquire energy early are more likely to mature at an earlier age, as a result of faster energy gain which can fuel maturation and reproduction. 2. We aimed to test the hypothesis that heritable resource acquisition variation that covaries with efficiency along the ontogeny would influence maturation timing of individuals. 3. To test this hypothesis, we utilized Atlantic salmon as a model which exhibits a simple, hence trackable, genetic control of maturation age. We then monitored the variation in diet acquisition (quantified as stomach fullness and composition) of individuals with different ages, and linked it with genomic regions (haploblocks) that were previously identified to be associated with age-at-maturity. 4. Consistent with the hypothesis, we demonstrated that one of the life-history genomic regions tested (six6) was indeed associated with age-dependent differences in stomach fullness. Prey composition was marginally linked tosix6, and suggestively (but non-significantly) tovgll3genomic regions. We further showed Atlantic salmon switched to the so-called 'feast and famine' strategy along the ontogeny, where older age groups exhibited heavier stomach content, but that came at the expense of running on empty more often. 5. These results suggest genetic variation underlying resource utilization may explain the genetic basis of age structure in Atlantic salmon. Given that ontogenetic diet has a genetic component and the strong spatial diversity associated with these genomic regions, we predict populations with diverse maturation age will have diverse evolutionary responses to future changes in marine food web structures.Peer reviewe
    • 

    corecore