28 research outputs found

    CIRENE Air-Sea Interactions in the Seychelles-Chagos Thermocline Ridge Region

    Get PDF
    A field experiment in the southwestern Indian Ocean provides new insights into ocean-atmosphere interactions in a key climatic region

    Cirene : air-sea iInteractions in the Seychelles-Chagos thermocline ridge region

    Get PDF
    Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2008BAMS2499.1.The Vasco—Cirene program ex-plores how strong air—sea inter-actions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in Jan-uary—February 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.CNES funded the Vasco part of the experiment; INSU funded the Cirene part. R/V SuroĂźt is an Ifremer ship. The contributions from ODU, WHOI, and FOI (Sweden) are supported by the National Science Foundation under Grant Number 0525657. The participation of the University of Miami group was funded though NASA (NNG04HZ33C). PMEL participation was supported through NOAA’s Office of Climate Observation

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Removing Biases in Oceanic Turbulent Kinetic Energy Dissipation Rate Estimated from Microstructure Shear Data

    No full text
    Abstract To calculate a turbulent kinetic energy dissipation rate from the microstructure vertical shear of the horizontal velocity via a spectral analysis, shear spectra need first to be cleaned from vibrations of the moving vehicle. Unambiguously, this study shows that the spectral cleaning must be applied all over the frequency range and not only at frequencies larger than 10 Hz, as a recent study suggested. For a Vertical Microstructure Profiler (VMP-6000), not correcting for vehicle vibrations below 10 Hz leads to overestimated dissipation rates from 50% to 700% for usual downcast velocities and for weak dissipation rates ( Δ < 1 × 10 −9 W kg −1 ). Vibrations concern all vehicles, but the exact vibrational frequency signature depends on the vehicle shape and its downcast velocity. In any case, a spectral cleaning over the whole frequency range is strongly advised. This study also reports on a systematic low bias of inferred dissipation rates induced by the spectral cleaning when too few degrees of freedom are available for the cleaning, which is usually the default of the standard processing. Whatever the dissipation rate level, not correcting for the bias leads to underestimated dissipation rates by a factor 1.4–2.7 (with usual parameters), the exact amplitude of the bias depending on the number of degrees of freedom and on the number of independent accelerometer axes used for the cleaning. It is strongly advised that such a bias be taken into account to recompute dissipation rates of past datasets and for future observations

    Removing Biases in Oceanic Turbulent Kinetic Energy Dissipation Rate Estimated from Microstructure Shear Data

    No full text
    Abstract To calculate a turbulent kinetic energy dissipation rate from the microstructure vertical shear of the horizontal velocity via a spectral analysis, shear spectra need first to be cleaned from vibrations of the moving vehicle. Unambiguously, this study shows that the spectral cleaning must be applied all over the frequency range and not only at frequencies larger than 10 Hz, as a recent study suggested. For a Vertical Microstructure Profiler (VMP-6000), not correcting for vehicle vibrations below 10 Hz leads to overestimated dissipation rates from 50% to 700% for usual downcast velocities and for weak dissipation rates ( Δ < 1 × 10 −9 W kg −1 ). Vibrations concern all vehicles, but the exact vibrational frequency signature depends on the vehicle shape and its downcast velocity. In any case, a spectral cleaning over the whole frequency range is strongly advised. This study also reports on a systematic low bias of inferred dissipation rates induced by the spectral cleaning when too few degrees of freedom are available for the cleaning, which is usually the default of the standard processing. Whatever the dissipation rate level, not correcting for the bias leads to underestimated dissipation rates by a factor 1.4–2.7 (with usual parameters), the exact amplitude of the bias depending on the number of degrees of freedom and on the number of independent accelerometer axes used for the cleaning. It is strongly advised that such a bias be taken into account to recompute dissipation rates of past datasets and for future observations

    Removing Biases in Oceanic Turbulent Kinetic Energy Dissipation Rate Estimated from Microstructure Shear Data

    No full text
    Abstract To calculate a turbulent kinetic energy dissipation rate from the microstructure vertical shear of the horizontal velocity via a spectral analysis, shear spectra need first to be cleaned from vibrations of the moving vehicle. Unambiguously, this study shows that the spectral cleaning must be applied all over the frequency range and not only at frequencies larger than 10 Hz, as a recent study suggested. For a Vertical Microstructure Profiler (VMP-6000), not correcting for vehicle vibrations below 10 Hz leads to overestimated dissipation rates from 50% to 700% for usual downcast velocities and for weak dissipation rates ( Δ < 1 × 10 −9 W kg −1 ). Vibrations concern all vehicles, but the exact vibrational frequency signature depends on the vehicle shape and its downcast velocity. In any case, a spectral cleaning over the whole frequency range is strongly advised. This study also reports on a systematic low bias of inferred dissipation rates induced by the spectral cleaning when too few degrees of freedom are available for the cleaning, which is usually the default of the standard processing. Whatever the dissipation rate level, not correcting for the bias leads to underestimated dissipation rates by a factor 1.4–2.7 (with usual parameters), the exact amplitude of the bias depending on the number of degrees of freedom and on the number of independent accelerometer axes used for the cleaning. It is strongly advised that such a bias be taken into account to recompute dissipation rates of past datasets and for future observations

    Observation of two transient episodes in an Arctic Coastal Polynya in late winter: Supercooled water and sea ice desalination

    No full text
    International audienceCoastal Arctic polynyas play an important role in forming dense water and contribute to the deep ocean ventilation. Dense water formation results from brine rejection associated with sea-ice production. In March 2007, a 60m-long ice tethered mooring, recording temperature and salinity at high frequency with a relatively fine vertical resolution and a prototype float (Ice-T) measuring ice-thickness and thermal profiles in sea ice were deployed in Storfjorden in the Svalbard archipelago. This fjord hosts a latent heat polynya which is maintained open under northeasterly wind conditions. The water masses analysis reveals that the main pool of the fjord is occupied by Brine-enriched Shelf Water (BSW) over the whole water column, while the southwest part of the fjord is occupied by Arctic Water (ArW). The BSW recorded at the bottom of the mooring has a salinity of 35.2 (density of 28.31 kg m-3), which is among the densest values of BSW reported in this region in the literature. Measurements indicate that the water column is slightly supercooled down to 30m for the first day of the record until a warm storm breaks the ice. Maximum supercooling values are 0.007±0.002°C below the in-situ freezing point with a mean value of 0.005±0.002°C at 10m. The origin of this supercooled water is investigated by analyzing the ice cover and the ocean-atmosphere heat flux during the days that preceded these observations. Although the amount of supercooling is relatively low compared with values recently reported in Storfjorden, these observations show that supercooled water can still be present under the ice several days after the cooling and freezing period. A sudden and brief salinity anomaly reaching 0.2 ppt is observed at the base of the ice. Concomitant temperature anomalies are recorded in the sea ice. The origin of this signal, which occurs during a warm storm, is analyzed. As this salinity anomaly cannot be associated with ice formation, different sea ice desalination processes are investigated, in particular flushing by meltwater and gravity drainage

    How important are diapycnal mixing and geothermal heating for the deep circulation of the Western Mediterranean?

    No full text
    The dissipation rate of turbulent kinetic energy Δ and the associated diapycnal turbulent mixing is inferred from a set of microstructure observations collected over several cruises from year 2012 to 2014. The geographical distribution of Δ highlights several regions of enhanced levels of turbulence ranging from 10−9 to 10−6 W kg−1: the Sicily Channel, the Corsica Channel, and the Ligurian Sea. Elsewhere, Δ was small, often below 10−10 W kg−1. Below 1300 m, geothermal heating provides three-fold more buoyancy than small-scale turbulence. Geothermal heating and turbulent diffusion provide enough buoyancy to balance 15% to 50% of a mean yearly deep water formation rate of 0.9 to 0.3 sverdrup (106 m3/s), respectively. The remaining part has to eventually overflow through the Strait of Gibraltar
    corecore