98 research outputs found

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    Get PDF
    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.We are very grateful to the following agencies and organizations for financial support,: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La, Provincia de Ailendoza. Municipalidad de Malargile. INDM floldings and Valle Las Lenas, in gratitude for their continuing cooperation over land access. Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e 'Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacdo de Amparo a Pesquisa do Est ado de Rio de Janeiro (FAP HRJ), Fundacdo de Amparo Pesquisa do Estado de Sdo Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (IVICT), Brazil; AVCR AVOZ10100502 and AVOZ10100522, GAAV KJB100100904, AISMT-CR LA08016, LG11044, 1VIEB111003, MSAI0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul I-N2P3/CNRS, Centre National de la -Recherche Scientifique ((1 NRS), Conseil Regional Ile-de-France, f)epartement, Physique Nuclealre et Corpusculaire (I N( Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DITG), Finanzministerium Baden-Wurttemberg, flelmholtz-Gemeinschaft Deutscher Forschungszentren Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerimn fur Wissenschaft, Forschung und Kunst, Baden-WUrttemberg, Germany; Istituto Nazion ale di Fisica Nucleare (INFN), Ministero dell'Istruzione, delhLniversita e della Ricerca (MIUR), Italy: Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onden s Cultuur on NVetenschap Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Rmdamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISETD1 partnership projects nr.20/2012 and nr.194/2012, project nr.1 /ASPERA2/20I2 ERA-NET and PN-IIRU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and 'Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (( PAN), X unta de Galicia Spain; Science and Technology Facilities Council, United kingdom; Department of Luergy, Contract Nos. DE-ACO2-07(11-111359, DE-FR02-04E1(41300, DE-FG02-99E1(41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/HPLANET, European Particle Physics Latin American Network, European Union 7th Frarneworlc Program. Grant No. IIRSES-2009-GA-246806; and UNESCO.Peer reviewe

    Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal

    Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Get PDF
    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and adminis- trative staff in MalargĂŒe. We are very grateful to the following agencies and organiza- tions for financial support: ComisiĂłn Nacional de EnergĂ­a AtĂłmica, FundaciĂłn Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de MalargĂŒe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo Ă  Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP), MinistĂ©rio de CiĂȘncia e Tecnolo- gia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517 and GA UK 119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre Na- tional de la Recherche Scientifique (CNRS), Conseil RĂ©gional Ile-de- France, DĂ©partement Physique NuclĂ©aire et Corpusculaire (PNC- IN2P3/CNRS), DĂ©partement Sciences de l’Univers (SDU-INSU/ CNRS), France; Bundesministerium fĂŒr Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministeri- um Baden-WĂŒrttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fĂŒr Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fĂŒr Wissenschaft, Forschung und Kunst, Baden-WĂŒrttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y TecnologĂ­a (CONACYT), Mexico; Ministerie van Ond- erwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wet- enschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds with- in COMPETE - Programa Operacional Factores de Competitividade through Fundação para a CiĂȘncia e a Tecnologia, Portugal; Roma- nian Authority for Scientific Research ANCS, CNDI-UEFISCDI part- nership projects nr.20/2012 and nr.194/2012, project nr.1/ ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Roma- nia; Ministry for Higher Education, Science, and Technology, Slove- nian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e InnovaciĂłn and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE- FR02-04ER41300, DE-FG02-99ER41107, National Science Founda- tion, Grant No. 0450696, The Grainger Foundation USA; NAFO- STED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. We would like to thank the former Michigan Tech students: Nathan Kelley-Hoskins, Kyle Luck and Arin Nelson for their impor- tant contribution to the development of this paper. We would like to thank NOAA for the GOES satellite data that we freely down- loaded from their website. Also, we would like to mention in these acknowledgments Dr. Steve Ackerman and Dr. Tony Schreiner for very valuable conversationsPeer reviewe

    The rapid atmospheric monitoring system of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data

    The Pierre Auger Observatory II: Studies of Cosmic Ray Composition and Hadronic Interaction models

    Full text link
    Studies of the composition of the highest energy cosmic rays with the Pierre Auger Observatory, including examination of hadronic physics effects on the structure of extensive air showers.Comment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    • 

    corecore