471 research outputs found
Optical Fiber Communication Systems Based on End-to-End Deep Learning: (Invited Paper)
We investigate end-to-end optimized optical transmission systems based on feedforward or bidirectional recurrent
neural networks (BRNN) and deep learning. In particular, we report the first experimental demonstration of a BRNN auto-encoder,
highlighting the performance improvement achieved with recurrent processing for communication over dispersive nonlinear channels
End-to-End Learning in Optical Fiber Communications: Experimental Demonstration and Future Trends
Fiber-optic auto-encoders are demonstrated on an intensity modulation/direct detection testbed, outperforming state-of-the-art signal processing. Algorithms for end-to-end optimization using experimentally collected data are discussed. The end-to-end learning framework is extended for performing optimization of the symbol distribution in probabilistically-shaped coherent systems
Parents just don't understand: Parent-offspring conflict over mate choice
Previous research reveals that children and parents are not in complete agreement over which traits are most important for the mate of the child. Children tend to prefer traits that suggest genetic quality, whereas parents prefer characteristics that suggest high parental investment and cooperation with the ingroup. Using a sample of parents, mothers (n = 234) and fathers (n =240) the hypothesis was supported; parents perceived characteristics indicating a lack of genetic quality as being more unacceptable to the child, while characteristics indicating a lack of parental investment and cooperation with the ingroup were more unacceptable to themselves. Sex differences between mothers and fathers and sons and daughters were explored
Amorphous alumina in the extended atmosphere of Alpha Orionis
In this paper we study the extended atmosphere of the late-type supergiant
Alpha Orionis. Infrared spectroscopy of red supergiants reveals strong
molecular bands, some of which do not originate in the photosphere but in a
cooler layer of molecular material above it. Lately, these layers have been
spatially resolved by near and mid-IR interferometry. In this paper, we try to
reconcile the IR interferometric and ISO-SWS spectroscopic results on Alpha
Orionis with a thorough modelling of the photosphere, molecular layer(s) and
dust shell. From the ISO and near-IR interferometric observations, we find that
Alpha Orionis has only a very low density water layer close above the
photosphere. However, mid-IR interferometric observations and a narrow-slit
N-band spectrum suggest much larger extra-photospheric opacity close to the
photosphere at those wavelengths, even when taking into account the detached
dust shell. We argue that this cannot be due to the water layer, and that
another source of mid-IR opacity must be present. We show that this opacity
source is probably neither molecular nor chromospheric. Rather, we present
amorphous alumina (Al2O3) as the best candidate and discuss this hypothesis in
the framework of dust-condensation scenarios.Comment: 15 pages, 18 figures, accepted for publication in A&
Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC
The 8π spectrometer, located at TRIUMF-ISAC, was the world\u27s most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Csm decay scheme, are shown. With sufficient statistics, measurements of conversion coefficients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted
Ground-State and Pairing-Vibrational Bands with Equal Quadrupole Collectivity in \u3csup\u3e124\u3c/sup\u3eXe
The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8πγ-ray spectrometer at the TRIUMF-ISAC facility. . . .
For the remainder of this abstract, please visit: http://dx.doi.org/10.1103/PhysRevC.91.04432
- …