656 research outputs found

    Cost effective combined axial fan and throttling valve control of ventilation rate

    Get PDF
    This paper is concerned with Proportional-Integral-Plus (PIP) control of ventilation rate in mechanically ventilated agricultural buildings. In particular, it develops a unique fan and throttling valve control system for a 22m3 test chamber, representing a section of a livestock building or glasshouse, at the Katholieke Universiteit Leuven. Here, the throttling valve is employed to restrict airflow at the outlet, so generating a higher static pressure difference over the control fan. In contrast with previous approaches, however, the throttling valve is directly employed as a second control actuator, utilising airflow from either the axial fan or natural ventilation. The new combined fan/valve configuration is compared with a commercially available PID-based controller and a previously developed scheduled PIP design, yielding a reduction in power consumption in both cases of up to 45%

    Structure calculation, refinement and validation using CcpNmr Analysis

    Get PDF
    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral,hydrogen bonds and residual dipolar couplings (RDCs)],exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083

    Electron dephasing near zero temperature: an experimental review

    Full text link
    The behavior of the electron dephasing time near zero temperature, τϕ0\tau_\phi^0, has recently attracted vigorous attention. This renewed interest is primarily concerned with whether τϕ0\tau_\phi^0 should reach a finite or an infinite value as TT \to 0. While it is accepted that τϕ0\tau_\phi^0 should diverge if there exists only electron-electron (electron-phonon) scattering, several recent measurements have found that τϕ0\tau_\phi^0 depends only very weakly on temperature, if at all, when TT is sufficiently low. This article discusses the current experimental status of "the saturation problem", and concludes that the origin(s) for this widely observed saturation are still unresolved

    Structure of human Fe–S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP–ISD11 interactions

    Get PDF
    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic F e-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes. Keywords: LYR; ACP; iron-sulfur cluster; PLP; frataxi

    Human resource requirements for quality-assured electronic data capture of the tuberculosis case register

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tuberculosis case register is the data source for the reports submitted by basic management units to the national tuberculosis program. Our objective was to measure the data entry time required to complete and double-enter one record, and to estimate the time for the correction of errors in the captured information from tuberculosis case registers in Cambodia and Viet Nam. This should assist in quantifying the additional requirements in human resources for national programs moving towards electronic recording and reporting.</p> <p>Methods</p> <p>Data from a representative sample of tuberculosis case registers from Cambodia and Viet Nam were double-entered and discordances resolved by rechecking the original case register. Computer-generated data entry time recorded the time elapsed between opening of a new record and saving it to disk.</p> <p>Results</p> <p>The dataset comprised 22,732 double-entered records of 11,366 patients (37.1% from Cambodia and 62.9% from Viet Nam). The mean data entry times per record were 97.5 (95% CI: 96.2-98.8) and 66.2 (95% CI: 59.5-73.0) seconds with medians of 90 and 31 s respectively in Cambodia and in Viet Nam. The percentage of records with an error was 6.0% and 39.0% respectively in Cambodia and Viet Nam. Data entry time was inversely associated with error frequency. We estimate that approximately 118-person-hours were required to produce 1,000 validated records.</p> <p>Conclusions</p> <p>This study quantifies differences between two countries for data entry time for the tuberculosis case register and frequencies of data entry errors and suggests that higher data entry speed is partially offset by requiring revisiting more records for corrections.</p

    The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

    Get PDF
    BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ~40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor

    Orbital Kondo behavior from dynamical structural defects

    Full text link
    The interaction between an atom moving in a model double-well potential and the conduction electrons is treated using renormalization group methods in next-to-leading logarithmic order. A large number of excited states is taken into account and the Kondo temperature TKT_K is computed as a function of barrier parameters. We find that for special parameters TKT_K can be close to 1K1 {\rm K} and it can be of the same order of magnitude as the renormalized splitting Δ\Delta. However, in the perturbative regime we always find that T_K \alt \Delta with a T_K \alt 1 {\rm K} [Aleiner {\em et al.}, Phys. Rev. Lett. {\bf 86}, 2629 (2001)]. We also find that Δ\Delta remains unrenormalized at energies above the Debye frequency, ωDebye\omega_{\rm Debye}.Comment: 9 pages, 9 figures, RevTe

    Electron Dephasing in Mesoscopic Metal Wires

    Full text link
    The low-temperature behavior of the electron phase coherence time, τϕ\tau_{\phi}, in mesoscopic metal wires has been a subject of controversy recently. Whereas theory predicts that τϕ(T)\tau_{\phi}(T) in narrow wires should increase as T2/3T^{-2/3} as the temperature TT is lowered, many samples exhibit a saturation of τϕ\tau_{\phi} below about 1 K. We review here the experiments we have performed recently to address this issue. In particular we emphasize that in sufficiently pure Ag and Au samples we observe no saturation of τϕ\tau_{\phi} down to our base temperature of 40 mK. In addition, the measured magnitude of τϕ\tau_{\phi} is in excellent quantitative agreement with the prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We discuss possible explanations why saturation of τϕ\tau_{\phi} is observed in many other samples measured in our laboratory and elsewhere, and answer the criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200
    corecore