140 research outputs found

    Thrombocytogenesis by megakaryocyte; Interpretation by protoplatelet hypothesis

    Get PDF
    Serial transmission electron microscopy of human megakaryocytes (MKs) revealed their polyploidization and gradual maturation through consecutive transition in characteristics of various organelles and others. At the beginning of differentiation, MK with ploidy 32N, e.g., has 16 centrosomes in the cell center surrounded by 32N nucleus. Each bundle of microtubules (MTs) emanated from the respective centrosome supports and organizes 16 equally volumed cytoplasmic compartments which together compose one single 32N MK. During the differentiation, single centriole separated from the centriole pair, i.e., centrosome, migrates to the most periphery of the cell through MT bundle, corresponding to a half of the interphase array originated from one centrosome, supporting one “putative cytoplasmic compartment” (PCC). Platelet demarcation membrane (DM) is constructed on the boundary surface between neighbouring PCCs. Matured PCC, composing of a tandem array of platelet territories covered by a sheet of DM is designated as protoplatelet. Eventually, the rupture of MK results in release of platelets from protoplatelets

    Effects of body size on estimation of mammalian area requirements.

    Get PDF
    Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied blockcross validation to quantify bias in empirical home range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changedsubstantially at the upper end of the mass spectrum

    Cryogenically preserved RBCs support gametocytogenesis of Plasmodium falciparum in vitro and gametogenesis in mosquitoes

    Get PDF
    Background: The malaria Eradication Research Agenda (malERA) has identified human-to-mosquito transmission of Plasmodium falciparum as a major target for eradication. The cornerstone for identifying and evaluating transmission in the laboratory is standard membrane feeding assays (SMFAs) where mature gametocytes of P. falciparum generated in vitro are offered to mosquitoes as part of a blood-meal. However, propagation of "infectious" gametocytes requires 10-12 days with considerable physico-chemical demands imposed on host RBCs and thus, "fresh" RBCs that are ≤ 1-week old post-collection are generally recommended. However, in addition to the costs, physico-chemical characteristics unique to RBC donors may confound reproducibility and interpretation of SMFAs. Cryogenic storage of RBCs ("cryo-preserved RBCs") is accepted by European and US FDAs as an alternative to refrigeration (4 °C) for preserving RBC "quality" and while cryo-preserved RBCs have been used for in vitro cultures of other Plasmodia and the asexual stages of P. falciparum, none of the studies required RBCs to support parasite development for > 4 days. Results: Using the standard laboratory strain, P. falciparum NF54, 11 SMFAs were performed with RBCs from four separate donors to demonstrate that RBCs cryo-preserved in the gaseous phase of liquid nitrogen (- 196 °C) supported gametocytogenesis in vitro and subsequent gametogenesis in Anopheles stephensi mosquitoes. Overall levels of sporogony in the mosquito, as measured by oocyst and sporozoite prevalence, as well as oocyst burden, from each of the four donors thawed after varying intervals of cryopreservation (1, 4, 8, and 12 weeks) were comparable to using ≤ 1-week old refrigerated RBCs. Lastly, the potential for cryo-preserved RBCs to serve as a suitable alternative substrate is demonstrated for a Cambodian isolate of P. falciparum across two independent SMFAs. Conclusions: Basic guidelines are presented for integrating cryo-preserved RBCs into an existing laboratory/insectary framework for P. falciparum SMFAs with significant potential for reducing running costs while achieving greater reliability. Lastly, scenarios are discussed where cryo-preserved RBCs may be especially useful in enhancing the understanding and/or providing novel insights into the patterns and processes underlying human-to-mosquito transmission

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link

    Effects of body size on estimation of mammalian area requirements

    Get PDF
    Accurately quantifying species’ area requirements is a prerequisite for effective area‐based conservation. This typically involves collecting tracking data on species of interest and then conducting home‐range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home‐range areas with GPS locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4,000 kg. We then applied block cross‐validation to quantify bias in empirical home‐range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum
    corecore