314 research outputs found

    A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2

    Get PDF
    Scab, caused by the ascomycete fungus Venturia pirina, leads to severe damage on European pear varieties resulting in a loss of commercial value and requiring frequent use of fungicides. Identifying scab resistance genes, developing molecular markers linked to these genes and establishing marker-assisted selection would be an effective way to improve European pear breeding for scab resistance. Most of the European pear cultivars (Pyrus communis) are currently reported to be sensitive. The pear cultivar ‘Navara’ was shown to carry a major scab resistance gene whose phenotypic expression in seedling progenies was a typical stellate necrosis symptom. The resistance gene was called Rvp1, for resistance to V. pirina, and was mapped on linkage group 2 of the pear genome close to microsatellite marker CH02b10. This genomic region is known to carry a cluster of scab resistance genes in apple indicating a first functional synteny for scab resistance between apple and pear

    Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’

    Get PDF
    Fire blight is the most destructive bacterial disease affecting apple (Malus×domestica) worldwide. So far, no resistance gene against fire blight has been characterized in apple, despite several resistance regions having been identified. A highly efficacious resistance quantitative trait locus (QTL) was localized on linkage group 12 (LG12) of the ornamental cultivar ‘Evereste’. A marker previously reported to be closely linked to this resistance was used to perform a chromosome landing. A bacterial artificial chromosome (BAC) clone of 189 kb carrying the fire blight resistance QTL was isolated and sequenced. New microsatellite markers were developed, and the genomic region containing the resistance locus was limited to 78 kb. A cluster of eight genes with homologies to already known resistance gene structures to bacterial diseases was identified and the corresponding gene transcription was verified. From this cluster, two genes were recognized in silico as the two most probable fire blight resistance genes showing homology with the Pto/Prf complex in tomato

    Differential selection pressures exerted by host resistance quantitative trait loci on a pathogen population: a case study in an apple × Venturia inaequalis pathosystem

    Get PDF
    Understanding how pathogens evolve according to pressures exerted by their plant hosts is essential for the derivation of strategies aimed at the durable management of resistant cultivars. The spectrum of action of the resistance factors in the partially resistant cultivars is thought to be an important determinant of resistance durability. However, it has not yet been demonstrated whether the pressures exerted by quantitative resistance are different according to their spectrum of action.To investigate selection pressures exerted by apple genotypes harbouring various resistance quantitative trait loci (QTLs) on a mixed inoculum of the scab disease agent, Venturia inaequalis, we monitored V. inaequalis isolate proportions on diseased apple leaves of an F1 progeny using quantitative pyrosequencing technology and QTL mapping. Broad-spectrum resistances did not exert any differential selection pressures on the mixed inoculum, whereas narrow-spectrum resistances decreased the frequencies of some isolates in the mixture relative to the susceptible host genotypes. Our results suggest that the management of resistant cultivars should be different according to the spectrum of action of their resistance factors. The pyramiding of broad-spectrum factors or the use of a mixture of apple genotypes that carry narrow-spectrum resistance factors are two possible strategies for the minimization of resistance erosion

    An integrated approach for increasing breeding efficiency in apple and peach in Europe

    Get PDF
    Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond

    High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development

    Get PDF
    Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development
    corecore