112 research outputs found

    Testing of SNS-032 in a panel of human neuroblastoma cell lines with acquired resistance to a broad range of drugs

    Get PDF
    Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclindependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition–mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases

    ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein

    Get PDF
    P-glycoprotein (P-gp) pumps multiple types of drugs out of the cell, using energy generated from ATP, and confers multidrug resistance (MDR) on cancer cells. ZD6474 is an orally active, selective inhibitor of the vascular endothelial growth factor receptor, epidermal growth factor receptor, and rearranged during transfection tyrosine kinases. This study was designed to examine whether ZD6474 reverses P-gp-mediated MDR in cancer cells. Here, we show that clinically achievable levels of ZD6474 reverse P-gp-mediated MDR of the P-gp-overexpressing cell lines derived from breast cancer, MCF-7/adriamycin (ADR), and human oral epidermoid carcinoma, KBV200 to ADR, docetaxel, and vinorelbine. This ability to reverse the P-gp-mediated resistance is comparable to that of another frequently used reversal agent known as verapamil. ZD6474 itself moderately inhibits the proliferation of both MCF-7 and MCF-7/ADR cells with almost equal activity, but its inhibitory effect is not altered by co-incubation with verapamil, suggesting that ZD6474 may not be a substrate of P-gp. In addition, ZD6474 increases the intracellular accumulation of the P-gp substrate, rhodamine-123, and ADR, by enhancing the uptake and/or decreasing the efflux of these compounds in resistant cells. Further studies show that ZD6474 stimulates ATPase activity in a dose-dependent manner, which is required for the proper function of P-gp. In contrast, ZD6474 does not inhibit the expression level of P-gp. Our results suggest that ZD6474 is capable of reversing MDR in cancer cells by directly inhibiting the function of P-gp, a finding that may have clinical implications for ZD6474

    A phase II trial of gefitinib with 5-fluorouracil, leucovorin, and irinotecan in patients with colorectal cancer

    Get PDF
    Inhibition of epidermal growth factor receptor (EGFR) signalling contributes to the therapy of colorectal cancer. Gefitinib, an oral EGFR tyrosine kinase inhibitor, shows supra-additive growth inhibition with irinotecan and fluoropyrimidines in xenograft models. We designed a study to determine the tolerability and efficacy of gefitinib in combination with irinotecan, infusional 5-fluorouracil (5-FU) and leucovorin (LV), on a 2-week schedule. Among 13 patients with advanced colorectal cancer, 10 required dose reductions of irinotecan and 5-FU because of dehydration, diarrhoea, and neutropenia, seven of whom required hospitalisation, three with neutropenic fever. One patient achieved partial response and seven had disease stabilisation. The combination of this standard chemotherapy regimen with gefitinib is associated with excessive toxicity, suggesting an interaction at a pharmacokinetic or pharmacodynamic level

    EGFR-targeting drugs in combination with cytotoxic agents: from bench to bedside, a contrasted reality

    Get PDF
    The clinical experience recently reported with epidermal growth factor receptor (EGFR)-targeting drugs confirms the synergistic interactions observed between these compounds and conventional cytotoxic agents, which were previously established at the preclinical stage. There are, however, examples of major gaps between the bench and the bedside. Particularly demonstrative is the failure of the tyrosine kinase inhibitors (TKIs) (gefitinib and erlotinib) combined with chemotherapy in pretreated nonsmall cell lung cancer patients. These discrepancies can be due to several factors such as the methodology used to evaluate TKI plus cytotoxic agent combinations in preclinical models and the insufficient consideration given to the importance of the drug sequences for the tested combinations. Recent advances in understanding the biologic basis of acquired resistance to these agents have great potential to improve their clinical effectiveness. The purpose of this review is to critically examine the experimental conditions of the preclinical background for anti-EGFR drug–cytotoxic agent combinations and to attempt to explain the gap between clinical observations and preclinical data

    Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    Get PDF
    BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism

    Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma

    Get PDF
    Contains fulltext : 79699.pdf (publisher's version ) (Closed access)BACKGROUND: We evaluated the efficacy of imatinib mesylate in addition to hydroxyurea in patients with recurrent glioblastoma (GBM) who were either on or not on enzyme-inducing anti-epileptic drugs (EIAEDs). METHODS: A total of 231 patients with GBM at first recurrence from 21 institutions in 10 countries were enrolled. All patients received 500 mg of hydroxyurea twice a day. Imatinib was administered at 600 mg per day for patients not on EIAEDs and at 500 mg twice a day if on EIAEDs. The primary end point was radiographic response rate and secondary end points were safety, progression-free survival at 6 months (PFS-6), and overall survival (OS). RESULTS: The radiographic response rate after centralised review was 3.4%. Progression-free survival at 6 months and median OS were 10.6% and 26.0 weeks, respectively. Outcome did not appear to differ based on EIAED status. The most common grade 3 or greater adverse events were fatigue (7%), neutropaenia (7%), and thrombocytopaenia (7%). CONCLUSIONS: Imatinib in addition to hydroxyurea was well tolerated among patients with recurrent GBM but did not show clinically meaningful anti-tumour activity

    Effects of the lipid environment, cholesterol and bile acids on the function of purified, reconstituted human ABCG2 protein.

    No full text
    The human ABCG2 multidrug transporter actively extrudes a wide range of hydrophobic drugs and xenobiotics recognized by the transporter in the membrane phase. In order to examine the molecular nature of the transporter and the effects of the lipid environment, we have established an efficient protocol for the purification and reconstitution of the functional protein. We found that the drug-stimulated ATPase and the transport activity of ABCG2 are fully preserved by applying excess lipids and mild detergents during solubilization, while a detergent-induced dissociation of the ABCG2 dimer causes an irreversible inactivation. By using the purified, reconstituted protein we demonstrate that cholesterol is an essential activator, while bile acids are important modulators of the ABCG2 activity. Both wild-type ABCG2 and its R482G mutant variant require cholesterol for full activity, although exhibit different cholesterol sensitivity. Bile acids strongly decrease the basal ABCG2-ATPase activity both in the wild-type ABCG2 and in the mutant variant. These data reinforce the results for the modulatory effects of cholesterol and bile acids of ABCG2 investigated in a complex cell membrane environment. Moreover, these experiments open the possibility to perform functional and structural studies with a purified, reconstituted, and highly active ABCG2 multidrug transporter

    Interaction with the 5D3 Monoclonal Antibody Is Regulated by Intramolecular Rearrangements but Not by Covalent Dimer Formation of the Human ABCG2 Multidrug Transporter*

    Get PDF
    Human ABCG2 is a plasma membrane glycoprotein working as a homodimer or homo-oligomer. The protein plays an important role in the protection/detoxification of various tissues and may also be responsible for the multidrug-resistant phenotype of cancer cells. In our previous study we found that the 5D3 monoclonal antibody shows a function-dependent reactivity to an extracellular epitope of the ABCG2 transporter. In the current experiments we have further characterized the 5D3-ABCG2 interaction. The effect of chemical cross-linking and the modulation of extracellular S–S bridges on the transporter function and 5D3 reactivity of ABCG2 were investigated in depth. We found that several protein cross-linkers greatly increased 5D3 labeling in ABCG2 expressing HEK cells; however, there was no correlation between covalent dimer formation, the inhibition of transport activity, and the increase in 5D3 binding. Dithiothreitol treatment, which reduced the extracellular S–S bridge-forming cysteines of ABCG2, had no effect on transport function but caused a significant decrease in 5D3 binding. When analyzing ABCG2 mutants carrying Cys-to-Ala changes in the extracellular loop, we found that the mutant C603A (lacking the intermolecular S–S bond) showed comparable transport activity and 5D3 reactivity to the wild-type ABCG2. However, disruption of the intramolecular S–S bridge (in C592A, C608A, or C592A/C608A mutants) in this loop abolished 5D3 binding, whereas the function of the protein was preserved. Based on these results and ab initio folding simulations, we propose a model for the large extracellular loop of the ABCG2 protein
    corecore