35 research outputs found

    The effect of polyethylene glycol (PEG 8000) supplementation on in vitro gas production kinetics of leaves from tannin containing trees

    Get PDF
    The objective of this study was to determine the effect of inclusion of polyethylene glycol (PEG 8000) during in vitro incubation on gas production kinetics, organic matter digestibility (OMD) and the metabolisable energy (ME) content of foliage from the tannin containing tree species, Pistica lentiscus, Arbutus andrachne and Juniperus communis. The amount of gas produced when the foliage was incubated with buffered rumen fluid, was determined after 0, 3, 6, 12, 24, 48, 72 and 96 h of incubation in the presence of PEG at inclusions rates of 15, 30, 60 and 90 mg and in the absence of PEG. Their kinetics were described using the equation p = a + b (1-e-ct). Addition of PEG resulted in an increased gas production at almost all incubation times in all tree species. However species showed variable responses. After 3 h of incubation the PEG addition showed no significant effect on gas production when the foliage from A. andrachne was incubated, but had a significant effect on gas production as duration of incubation extended. The increase in gas production in response to increased levels of PEG inclusion was linear for P. lentiscus and J. communis. However, when the PEG inclusion rates exceeded 60 mg there was no significant increase in gas production when A. andrachne was incubated. The estimated parameters such as gas production rate(c) and gas production (a) from the immediately soluble fraction were not affected by the level PEG treatment, except that PEG addition at 90 mg had a significant effect on the gas production (a) from immediately soluble fraction of leaves of J. communis. Gas production (b) from the insoluble fraction (mL) and potential gas production (a+b), OMD and ME of tree leaves increased significantly with increasing levels of PEG addition. However, when PEG inclusion exceeded 60 mg these parameters showed no significant increase when leaves from A. andrachne were incubated. Although the mean increase in OMD per mg PEG supplementation was 0.131 digestibility units, the increase in ME per mg PEG supplementation was 0.0201 ME units. The elevated levels of gas produced, and increased OMD and ME estimates with the inclusion of PEG demonstrated the negative effect of tannins in foliage on digestibility. South African Journal of Animal Science Vol. 35(4) 2005: 229-23

    Effect of cultivar and formaldehyde treatment of barley grain on rumen fermentation characteristics using in vitro gas production

    Get PDF
    The aim of this study was to determine the effects of cultivar and formaldehyde treatment of barley grains on rumen fermentation characteristics using the in vitro gas production technique. Amount of gas produced (mL/g organic matter (OM)) during fermentation was determined after 0, 3, 6, 12, 24, 48, 72 and 96 h of incubation in buffered rumen fluid. The gas production kinetics were described using the equation: y = A {1 – exp [- b (t-T) – c (√t - √T)]} where b and c are the initial gas production rate constant (h-1) and later gas production rate constant (h-1/2), respectively. Cultivar and formaldehyde treatment had significant effects on gas production kinetics. Total gas production (A) ranged from 389.9 to 410.8 (mL/g OM) with the cultivar, Esterel, producing the largest volume of gas of the cultivars. Due to low gas production rates at 3, 6 and 12 h of incubation the cultivars, Viva and Cecilla, took the longest to produce 50% of their total volume of gas. Formaldehyde treatment reduced the rate (μ) of gas production at 3, 6 and 12 h of incubation, and the total volume of gas (A), but increased the time (h) to produce 50% of A and reduced the time (h) to produce 95% of A. The reduction in gas production ranged from 33.3 to 51 mL/g OM with 6 h incubation showing the highest decrease in gas production. It is concluded that formaldehyde treatment may provide an opportunity to manipulate the site of digestion of barley grain in the digestive tract of ruminants. Through the selection of suitable cultivars and through formaldehyde treatment the nutritional and health problems associated with the fermentation of barley grain in the rumen could be reduced. Keywords: Barley cultivars; formaldehyde treatment; gas production kinetics South African Journal of Animal Sciences Vol. 35 (3) 2005: pp.206-21

    Effect of heat treatment on in situ rumen degradability and in vitro gas production of full-fat soyabeans and soyabean meal

    Get PDF
    The objective of this study was to determine the effect of the heat treatment of full-fat soyabean (FFSB) and solvent extracted soyabean meal (SBM) on the in situ dry matter (DM) and protein degradability, and in vitro gas production kinetics of the protein sources. Ruminal disappearance of DM and crude protein (CP), and in vitro gas production were determined after 0, 4, 8, 16, 24, 48 and 72 h incubation using the in situ ruminal degradation and in vitro gas production techniques, respectively. In situ DM and CP disappearances were fitted to the exponential equation p = a + b (1-e-ct), where a is the rapid degradable fraction and b is the slow degradable fraction. In vitro gas production data were fitted to the equation, y = A {1 – exp [- b (t-T) – c (√t - √T)]}. Where b and c are the initial gas production rate constant (h-1) and later gas production rate constant (h-1/2), respectively. The two protein sources were heat treated both with steam pressure in an autoclave at 120 °C and in an oven at 150 °C for 20 min. Heat treatment had a significant effect on effective DM degradability (EDMD), effective CP degradability (ECPD) and in vitro gas production. Although the heat treatments reduced the EDMD, ECPD and the amount of gas produced, the results were inconsistent between protein sources. The heat treatments applied in the autoclave and the oven reduced the ECPD0.02 of FFSB by 12.5% and 10.9%, respectively. On the other hand, heat treatment applied through the autoclave decreased the ECPD0.02 of SBM by 13.9%, but by 18.7% when heat was applied through the oven. Heat treatment of SBM using the oven seemed to be more effective than using autoclaving. Heat treatments in the autoclave and oven reduced the total gas production from FFSB by 7.25 and 7.32%, respectively, and from SBM by 12.69 and 7.91%, respectively. It was concluded that heat treatment is an effective method of altering the rumen degradation characteristics of DM and CP in SBM and FFSB. Both methods could be used to increase the proportion of the rumen non-degradable protein fraction in protein sources which would then reach the small intestines unaffected by ruminal fermentation. Keywords: Full-fat soyabean; soyabean meal; heat treatment; in situ protein degradation; in vitro gas production South African Journal of Animal Sciences Vol. 35 (3) 2005: pp.186-19

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Nitrogen-Coordinated Iron−Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media

    No full text
    The ORR and OER performances of N-coordinated iron–carbon (FeNC), Ir/C, and Pt/C catalysts were compared using half-cell measurements. The results suggest significant ORR and OER activity for FeNC materials unlike state-of-the-art Ir/C or Pt/C which exhibited high catalytic activity only for one of the two reactions. Bifunctionality analysis on these three catalyst materials reveals significantly lower combined overpotential for FeNC catalysts compared to that for commercial Ir/C and Pt/C samples

    Evolution of N-Coordinated Iron-Carbon (FeNC) Catalysts and Their Oxygen Reduction (ORR) Performance in Acidic Media at Various Stages of Catalyst Synthesis: An Attempt at Benchmarking

    No full text
    SSCI-VIDE+ECI2D+JMI:UOZInternational audienceThe objective of this study was to understand the role of iron and the heat treatment steps involved in nitrogen-coordinated iron-carbon (FeNC) catalyst synthesis. We have studied the oxygen reduction reaction (ORR) performance of these catalysts as they evolve from their most crude and inactive form to their most active form. Electrochemical half-cell and fuel cell tests suggest that the presence of Fe was crucial in these samples. The high-temperature heat treatment (once in argon and then in ammonia) at temperatures aeyen950 A degrees C were also critical in imparting these catalysts with their highest activity; however, significant loss of activity was observed with cycling and potential hold at 0.5 V for 100 h. In addition, acid-washing after the first or the second pyrolysis steps produced a marked decrease in ORR activity relative to their unwashed counterparts. We also report findings from our efforts towards benchmarking FeNC catalysts for oxygen reduction reaction electrocatalysis. Specifically, we focus on correlating the specific kinetic current (i(K)) at 0.75 V to electrochemically accessible surface area (EASA) and roughness factor (RF) determined from electrochemical double layer capacitance measurements. Fe-57 Mossbauer spectroscopy was employed to shed light into the nature of active sites in FeNC catalysts and provide insights into their deactivation behavior caused by acid-washing. The results suggest planar FeN4 doublet (Fe2+, low spin) as an active site in these materials, which may be leached away in acid, explaining their decreased activity after acid washing. Results for characterization experiments using X-ray photoelectron spectroscopy, temperature programmed oxidation and X-ray absorption spectroscopy, superconducting quantum interference device magnetometry are also presented
    corecore