377 research outputs found

    Prospect of determining the Dirac/Majorana state of neutrino by Multi-OWL experiment

    Full text link
    We consider the non-radiative two body decay of a neutrino to a daughter neutrino with degraded energy and a very light particle (Majoron). Ultrahigh energy neutrinos from an astrophysical source like a Gamma Ray Burst undergoing this decay process are found to produce different number of events in the detector depending on whether they are Majorana or Dirac particles. The next generation large scale experiments like Multi-OWL is expected to provide us an accurate determination of the flux of neutrinos from astrophysical sources and this may enable us to distinguish between the Dirac and Majorana nature of neutrino.Comment: 18 pages latex, no figure. Journal of Phys. G in pres

    The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean.

    Get PDF
    Uncovering the genetic basis of phenotypic variation and the population history under which it established is key to understand the trajectories along which local adaptation evolves. Here, we investigated the genetic basis and evolutionary history of a clinal plumage color polymorphism in European barn owls (Tyto alba). Our results suggest that barn owls colonized the Western Palearctic in a ring-like manner around the Mediterranean and meet in secondary contact in Greece. Rufous coloration appears to be linked to a recently evolved nonsynonymous-derived variant of the melanocortin 1 receptor (MC1R) gene, which according to quantitative genetic analyses evolved under local adaptation during or following the colonization of Central Europe. Admixture patterns and linkage disequilibrium between the neutral genetic background and color found exclusively within the secondary contact zone suggest limited introgression at secondary contact. These results from a system reminiscent of ring species provide a striking example of how local adaptation can evolve from derived genetic variation

    High Velocity Molecular Outflows In Massive Cluster Forming Region G10.6-0.4

    Full text link
    We report the arcsecond resolution SMA observations of the 12^{12}CO (2-1) transition in the massive cluster forming region G10.6-0.4. In these observations, the high velocity 12^{12}CO emission is resolved into individual outflow systems, which have a typical size scale of a few arcseconds. These molecular outflows are energetic, and are interacting with the ambient molecular gas. By inspecting the shock signatures traced by CH3_{3}OH, SiO, and HCN emissions, we suggest that abundant star formation activities are distributed over the entire 0.5 pc scale dense molecular envelope. The star formation efficiency over one global free-fall timescale (of the 0.5 pc molecular envelope, 105\sim10^{5} years) is about a few percent. The total energy feedback of these high velocity outflows is higher than 1047^{47} erg, which is comparable to the total kinetic energy in the rotational motion of the dense molecular envelope. From order-of-magnitude estimations, we suggest that the energy injected from the protostellar outflows is capable of balancing the turbulent energy dissipation. No high velocity bipolar molecular outflow associated with the central OB cluster is directly detected, which can be due to the photo-ionization.Comment: 42 pages, 14 figures, accepted by Ap

    Minimal HCN emission from Molecular Clouds in M33

    Full text link
    Since HCN emission has been shown to be a linear tracer of ongoing star formation activity, we have searched for HCN (J = 1->0) emission from known GMCs in the nearby galaxy M33. No significant HCN emission has been found along any of the lines of sight. We find two lines of sight where CO-to-HCN integrated intensity ratios up to 280, nearly a factor of 6 above what is found in comparable regions of the Milky Way. Star formation tracers suggest that the HCN-to-star formation rate ratio (L_HCN/M_SFR) is a factor of six lower than what is observed in the Milky Way (on average) and local extragalactic systems. Simple chemical models accounting for the sub-solar N/O ratio suggest that depletion cannot account for the high CO-to-HCN ratios. Given HCN formation requires high extinction (A_V > 4), low metallicity may yield reduced dust shielding and thus a high CO/HCN ratio. The turbulence and structure of GMCs in M33 are comparable to those found in other systems, so the differences are unlikely to result from different GMC properties. Since lower CO-to-HCN ratios are associated with the highest rates of star formation, we attribute the deficits in part to evolutionary effects within GMCs.Comment: Accepted for publication in MNRA

    Tribal Education: The Missing Link

    Get PDF

    H2CO and CH3OH maps of the Orion Bar photodissociation region

    Get PDF
    A previous analysis of methanol and formaldehyde towards the Orion Bar concluded that the two molecular species may trace different physical components, methanol the clumpy material, and formaldehyde the interclump medium. To verify this hypothesis, we performed multi-line mapping observations of the two molecules to study their spatial distributions. The observations were performed with the IRAM-30m telescope at 218 and 241 GHz, with an angular resolution of ~11''. Additional data for H2CO from the Plateau de Bure array are also discussed. The data were analysed using an LVG approach. Both molecules are detected in our single-dish data. Our data show that CH3OH peaks towards the clumps of the Bar, but its intensity decreases below the detection threshold in the interclump material. When averaging over a large region of the interclump medium, the strongest CH3OH line is detected with a peak intensity of ~0.06K. Formaldehyde also peaks on the clumps, but it is also detected in the interclump gas. We verified that the weak intensity of CH3OH in the interclump medium is not caused by the different excitation conditions of the interclump material, but reflects a decrease in the column density of methanol. The abundance of CH3OH relative to H2CO decreases by at least one order of magnitude from the dense clumps to the interclump medium.Comment: 11 pages, accepted for publication in A&

    Reshaping the Narrative

    Get PDF
    https://scholarworks.umt.edu/grad_portfolios/1326/thumbnail.jp

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software
    corecore