884 research outputs found

    Cost effectiveness of ward based non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease: economic analysis of randomised controlled trial

    Get PDF
    OBJECTIVE: To evaluate the cost effectiveness of standard treatment with and without the addition of ward based non-invasive ventilation in patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease. DESIGN: Incremental cost effectiveness analysis of a randomised controlled trial. SETTING: Medical wards in 14 hospitals in the United Kingdom. PARTICIPANTS: The trial comprised 236 patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease and mild to moderate acidosis (pH 7.25-7.35) secondary to respiratory failure. The economic analysis compared the costs of treatment that these patients received after randomisation. MAIN OUTCOME MEASURE: Incremental cost per in-hospital death. RESULTS: 24/118 died in the group receiving standard treatment and 12/118 in the group receiving non-invasive ventilation (P=0.05). Allocation to the group receiving non-invasive ventilation was associated with a reduction in costs of £49 362 ($78 741; 73 109), mainly through reduced use of intensive care units. The incremental cost effectiveness ratio was £645 per death avoided (95% confidence interval £2310 to £386), indicating a dominant (more effective and less costly) strategy. Modelling of these data indicates that a typical UK hospital providing a non-invasive ventilation service will avoid six deaths and three to nine admissions to intensive care units per year, with an associated cost reduction of £12 000-53 000 per year. CONCLUSIONS: Non-invasive ventilation is a highly cost effective treatment that both reduced total costs and improved mortality in hospital

    Mechanism for the formation of the high-altitude stagnant cusp: Cluster and SuperDARN observations

    Get PDF
    On 16 March 2002, Cluster moved from nightside to dayside, across the high-altitude northern cusp during an extended period of relatively steady positive IMF BY and BZ. Combined Cluster and SuperDARN data imply the existence of two reconnection sites: in the high- latitude northern hemisphere dusk and southern hemisphere dawn sectors. Within the cusp, Cluster encounters 3 distinct plasma regions. First, injections of magnetosheath-like plasma associated with dawnward and sunward convection suggest Cluster crosses newly- reconnected field lines related to the dusk reconnection site. Second, Cluster observes a Stagnant Exterior Cusp (SEC), characterized by nearly isotropic and stagnant plasma. Finally, Cluster crosses a region with significant antifield-aligned flows. We suggest the observed SEC may be located on newly re-closed field lines, reconnected first poleward of the northern hemisphere cusp and later reconnected again poleward of the southern hemisphere cusp. We discuss how the Cluster observations correspond to expectations of ’double reconnection’ model

    Tree-space statistics and approximations for large-scale analysis of anatomical trees

    Get PDF
    Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php

    Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault

    Get PDF
    The Gongga Shan batholith of eastern Tibet, previously documented as a ca. 32–12.8 Ma granite pluton, shows some of the youngest U-Pb granite crystallization ages recorded from the Tibetan Plateau, with major implications for the tectonothermal history of the region. Field observations indicate that the batholith is composite; some localities show at least seven crosscutting phases of granitoids that range in composition from diorite to leucocratic monzogranite. In this study we present U-Pb ages of zircon and allanite dated by laser ablation–inductively coupled plasma–mass spectrometry on seven samples, to further investigate the chronology of the batholith. The age data constrain two striking tectonic-plutonic events: a complex Triassic–Jurassic (ca. 215–159 Ma) record of biotite-hornblende granodiorite, K-feldspar megacrystic granite and leucogranitic plutonism, and a Miocene (ca. 14–5 Ma) record of monzonite-leucogranite emplacement. The former age range is attributed to widespread Indosinian tectonism, related to Paleo-Tethyan subduction zone magmatism along the western Yangtze block of south China. The younger component may be related to localized partial melting (muscovite dehydration) of thickened Triassic flysch-type sediments in the Songpan-Ganze terrane, and are among the youngest crustal melt granites exposed on the Tibetan Plateau. Zircon and allanite ages reflect multiple crustal remelting events; the youngest, ca. 5 Ma, resulted in dissolution and crystallization of zircons and growth and/or resetting of allanites. The young garnet, muscovite, and biotite leucogranites occur mainly in the central part of the batholith and adjacent to the eastern margin of the batholith at Kangding, where they are cut by the left-lateral Xianshui-he fault. The Xianshui-he fault is the most seismically active strike-slip fault in Tibet and is thought to record the eastward extrusion of the central part of the Tibetan Plateau. The fault obliquely cuts all granites of the Gongga Shan massif and has a major transpressional component in the Kangding-Moxi region. The course of the Xianshui Jiang river is offset by ∼62 km along the Xianshui-he fault and in the Kangding area granites as young as ca. 5 Ma are cut by the fault. Our new geochronological data show that only a part of the Gongga Shan granite batholith is composed of young (Miocene) melt, and we surmise that as most of eastern Tibet is composed of Precambrian–Triassic Indosinian rocks, there is no geological evidence to support regional Cenozoic internal thickening or metamorphism and no evidence for eastward-directed lower crustal flow away from Tibet. We suggest that underthrusting of Indian lower crust north as far as the Xianshui-he fault resulted in Cenozoic uplift of the eastern plateau

    Compressional origin of the Naxos metamorphic core complex, Greece: structure, petrography, and thermobarometry

    Get PDF
    The island of Naxos, Greece, has been previously considered to represent a Cordilleran-style metamorphic core complex that formed during Cenozoic extension of the Aegean Sea. Although lithospheric extension has undoubtedly occurred in the region since 10 Ma, the geodynamic history of older, regional-scale, kyanite- and sillimanite-grade metamorphic rocks exposed within the core of the Naxos dome is controversial. Specifically, little is known about the pre-extensional prograde evolution and the relative timing of peak metamorphism in relation to the onset of extension. In this work, new structural mapping is presented and integrated with petrographic analyses and phase equilibrium modeling of blueschists, kyanite gneisses, and anatectic sillimanite migmatites. The kyanite-sillimanite−grade rocks within the core complex record a complex history of burial and compression and did not form under crustal extension. Deformation and metamorphism were diachronous and advanced down the structural section, resulting in the juxtaposition of several distinct tectono-stratigraphic nappes that experienced contrasting metamorphic histories. The Cycladic Blueschists attained ∼14.5 kbar and 470 °C during attempted northeast-directed subduction of the continental margin. These were subsequently thrusted onto the more proximal continental margin, resulting in crustal thickening and regional metamorphism associated with kyanite-grade conditions of ∼10 kbar and 600−670 °C. With continued shortening, the deepest structural levels underwent kyanite-grade hydrous melting at ∼8−10 kbar and 680−750 °C, followed by isothermal decompression through the muscovite dehydration melting reaction to sillimanite-grade conditions of ∼5−6 kbar and 730 °C. This decompression process was associated with top-to-the-NNE shearing along passive-roof faults that formed because of SW-directed extrusion. These shear zones predated crustal extension, because they are folded around the migmatite dome and are crosscut by leucogranites and low-angle normal faults. The migmatite dome formed at lower-pressure conditions under horizontal constriction that caused vertical boudinage and upright isoclinal folds. The switch from compression to extension occurred immediately following doming and was associated with NNE-SSW horizontal boudinage and top-to-the-NNE brittle-ductile normal faults that truncate the internal shear zones and earlier collisional features. The Naxos metamorphic core complex is interpreted to have formed via crustal thickening, regional metamorphism, and partial melting in a compressional setting, here termed the Aegean orogeny, and it was exhumed from the midcrust due to the switch from compression to extension at ca. 15 Ma

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    The Mw 5.1, 9 August 2020, Sparta Earthquake, North Carolina: The First Documented Seismic Surface Rupture in the Eastern United States

    Get PDF
    At 8:07 a.m. EDT on 9 Aug. 2020 a Mw 5.1 earthquake located ~3 km south of Sparta, North Carolina, USA, shook much of the eastern United States, producing the first documented surface rupture due to faulting east of the New Madrid seismic zone. The co-seismic surface rupture was identified along a 2-km-long traceable zone of predominantly reverse displacement, with folding and flexure generating a scarp averaging 8–10-cm-high with a maximum observed height of ~25 cm. Widespread deformation south of the main surface rupture includes cm-dm–long and mm-cm–wide fissures. Two trenches excavated across the surface rupture reveal that this earthquake propagated to the surface along a preexisting structure in the shallow bedrock, which had not been previously identified as an active fault. Surface ruptures by faulting are rarely reported for M <6 earthquakes, and hence the Sparta earthquake provides an opportunity to improve seismic hazard knowledge associated with these moderate events. Furthermore, this earthquake occurred in a very low strain rate intraplate setting, where earthquake surface deformation, regardless of magnitude, is sparse in time and rare to observe and characterize

    Near-Infrared Spectral Monitoring of Triton with IRTF/SpeX II: Spatial Distribution and Evolution of Ices

    Full text link
    This report arises from an ongoing program to monitor Neptune's largest moon Triton spectroscopically in the 0.8 to 2.4 micron range using IRTF/SpeX. Our objective is to search for changes on Triton's surface as witnessed by changes in the infrared absorption bands of its surface ices N2, CH4, H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 through 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy & Young 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton's Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton's N2 ice: the 2.15 micron absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton's CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton's CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.Comment: 22 pages, 13 figures, 5 tables, to appear in Icaru

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore