335 research outputs found

    Designing a Robust, Reliable and Repeatable Fieldwork Protocol for Hospital Observations

    Get PDF
    When undertaking fieldwork in a complex/sensitive environment such as a busy hospital ward, it is vital that the recording technique is robust (to cater for various eventualities), reliable (to accurately capture data) and repeatable (to share the data). It is therefore important to test and prepare protocols to maximize the effectiveness of the time available for any observations. Our poster demonstrates a real-time simulation built using the Unreal Engine 3D game platform and applied to our ‘Paths of Resistant Pathogens’ research study. This project aims to tackle issues of antimicrobial resistance (AMR) - such as superbugs - through a detailed architecturally-informed analysis of transmission risks inherent in hospital design. The simulation provides a number of benefits to assist with piloting optimal methodologies and protocols including: 1. Time-critical trialing of protocols 2. Assessing the accuracy of protocols 3. Training observer

    A parameterization of Greenland's tip jets suitable for ocean or coupled climate models

    Get PDF
    Greenland's tip jets are low-level, high wind speed jets forced by an interaction of the synoptic-scale atmospheric flow and the steep, high orography of Greenland. These jets are thought to play an important role in both preconditioning for, and triggering of, open-ocean convection in the Irminger Sea. However, the relatively small spatial scale of the jets prevents their accurate representation in the relatively low resolution (~1 degree) atmospheric (re-)analyses which are typically used to force ocean general circulation models (e.g. ECMWF ERA-40 and NCEP reanalyses, or products based on these). Here we present a method of ‘bogussing’ Greenland's tip jets into such surface wind fields and thus, via bulk flux formulae, into the air-sea turbulent flux fields. In this way the full impact of these mesoscale tip jets can be incorporated in any ocean general circulation model of sufficient resolution. The tip jet parameterization is relatively simple, making use of observed linear gradients in wind speed along and across the jet, but is shown to be accurate to a few m s-1 on average. The inclusion of tip jets results in a large local increase in both the heat and momentum fluxes. When applied to a 1-dimensional mixed-layer model this results in a deepening of the winter mixed-layer of over 300 m. The parameterization scheme only requires 10 meter wind speed and mean sea level pressure as input fields; thus it is also suitable for incorporation into a coupled atmosphere-ocean climate model at the coupling stage

    DNA binding shifts the redox potential of the transcription factor SoxR

    Get PDF
    Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential value corresponds to a dramatic shift of +490 mV versus values found in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site, we also see, associated with SoxR binding, an attenuation in the Redmond red signal compared with that for Redmond red attached below the SoxR binding site. This observation is consistent with a SoxR-binding-induced structural distortion in the DNA base stack that inhibits DNA-mediated charge transport to the Redmond red probe. The dramatic shift in potential for DNA-bound SoxR compared with the free form is thus reconciled based on a high-energy conformational change in the SoxR–DNA complex. The substantial positive shift in potential for DNA-bound SoxR furthermore indicates that, in the reducing intracellular environment, DNA-bound SoxR is primarily in the reduced form; the activation of DNA-bound SoxR would then be limited to strong oxidants, making SoxR an effective sensor for oxidative stress. These results more generally underscore the importance of using DNA electrochemistry to determine DNA-bound potentials for redox-sensitive transcription factors because such binding can dramatically affect this key protein property

    Cytosolic Fe-S cluster protein maturation and iron regulation are independent of the mitochondrial Erv1/Mia40 import system

    Get PDF
    The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways

    Promiscuity and preferences of metallothioneins: the cell rules

    Get PDF
    Metalloproteins are essential for many cellular functions, but it has not been clear how they distinguish between the different metals to bind the correct ones. A report in BMC Biology finds that preferences of two metallothionein isoforms for two different cations are due to inherent properties of these usually less discriminating proteins. Here these observations are discussed in the context of the cellular mechanisms that regulate metal binding to proteins

    Insights into the mode of action of a putative zinc transporter CzrB in thermus thermophilus

    Get PDF
    peer-reviewedThis paper was obtained through PEER (Publishing and the Ecology of European Research) http://www.peerproject.euThe crystal structures of the cytoplasmic domain of the putative zinc transporter CzrB in the apoand zinc-bound forms reported herein are consistent with the protein functioning in vivo as a homodimer. NMR, X-ray scattering and size exclusion chromatography provide support for dimer formation. Full-length variants of CzrB in the apo and zinc-loaded states were generated by homology modelling with the Zn2+ / H+ antiporter YiiP. The model suggests a way in which zinc binding to the cytoplasmic fragment creates a docking site to which a metallochaperone can bind for delivery and transport of its zinc cargo. Since the cytoplasmic domain may exist in the cell as an independent, soluble protein a proposal is advanced that it functions as a metallochaperone and that it regulates the zinc-transporting activity of the full-length protein. The latter requires that zinc binding becomes uncoupled from the creation of a metallochaperone-docking site on CzrB

    Two Dot1 isoforms in Saccharomyces cerevisiae as a result of leaky scanning by the ribosome

    Get PDF
    Dot1 is a conserved histone methyltransferase that methylates histone H3 on lysine 79. We previously observed that in Saccharomyces cerevisiae, a single DOT1 gene encodes two Dot1 protein species. Here, we show that the relative abundance of the two isoforms changed under nutrient-limiting conditions. A mutagenesis approach showed that the two Dot1 isoforms are produced from two alternative translation start sites as a result of leaky scanning by the ribosome. The leaky scanning was not affected by the 5′- or 3′-untranslated regions of DOT1, indicating that translation initiation is determined by the DOT1 coding sequence. Construction of yeast strains expressing either one of the isoforms showed that both were sufficient for Dot1’s role in global H3K79 methylation and telomeric gene silencing. However, the absence of the long isoform of Dot1 altered the resistance of yeast cells to the chitin-binding drug Calcofluor White, suggesting that the two Dot1 isoforms have a differential function in cell wall biogenesis

    In-cell NMR in E. coli to Monitor Maturation Steps of hSOD1

    Get PDF
    In-cell NMR allows characterizing the folding state of a protein as well as posttranslational events at molecular level, in the cellular context. Here, the initial maturation steps of human copper, zinc superoxide dismutase 1 are characterized in the E. coli cytoplasm by in-cell NMR: from the apo protein, which is partially unfolded, to the zinc binding which causes its final quaternary structure. The protein selectively binds only one zinc ion, whereas in vitro also the copper site binds a non-physiological zinc ion. However, no intramolecular disulfide bridge formation occurs, nor copper uptake, suggesting the need of a specific chaperone for those purposes

    The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress

    Get PDF
    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress

    Zinc-Regulated DNA Binding of the Yeast Zap1 Zinc-Responsive Activator

    Get PDF
    The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1
    corecore