8 research outputs found

    Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions

    Get PDF
    The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e ≈ 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V ≈ 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the “compact layer” and “shear plane” effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.National Science Foundation (U.S.) (contract DMS-0707641

    Expert perspectives on global biodiversity loss and its drivers and impacts on people

    Get PDF
    Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of biodiversity experts worldwide, we conducted a survey and asked experts to focus on the taxa and freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss interact synergistically) and important demographic and geographic differences in specialists’ perspectives and estimates. Experts from groups that are underrepresented in biodiversity science, including women and those from the Global South, recommended different priorities for conservation solutions, with less emphasis on acquiring new protected areas, and provided higher estimates of biodiversity loss and its impacts. This may in part be because they disproportionately study the most highly threatened taxa and habitats. Front Ecol Environ 2022;

    Expert perspectives on global biodiversity loss and its drivers and impacts on people

    No full text
    Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of biodiversity experts worldwide, we conducted a survey and asked experts to focus on the taxa and freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss interact synergistically) and important demographic and geographic differences in specialists’ perspectives and estimates. Experts from groups that are underrepresented in biodiversity science, including women and those from the Global South, recommended different priorities for conservation solutions, with less emphasis on acquiring new protected areas, and provided higher estimates of biodiversity loss and its impacts. This may in part be because they disproportionately study the most highly threatened taxa and habitats. Front Ecol Environ 2022;

    Harbors and Democracy

    No full text
    corecore