31 research outputs found

    The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    Get PDF
    The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin

    Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space

    Full text link
    The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space. Ultracold temperatures amplify quantum effects, while free-fall allows further cooling and longer interactions time with gravity - the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensation (BECs), superfluidity, and strongly interacting quantum gases. Quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the Universality of Free Fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10−1210^{-12} level. In space, cooling the elements needed to explore the rich physics of strong interactions and preparing the multiple species required for quantum tests of the UFF has remained elusive. Here, utilizing upgraded capabilities of the multi-user Cold Atom Lab (CAL) instrument within the International Space Station (ISS), we report the first simultaneous production of a dual species Bose-Einstein condensate in space (formed from 87^{87}Rb and 41^{41}K), observation of interspecies interactions, as well as the production of 39^{39}K ultracold gases. We have further achieved the first space-borne demonstration of simultaneous atom interferometry with two atomic species (87^{87}Rb and 41^{41}K). These results are an important step towards quantum tests of UFF in space, and will allow scientists to investigate aspects of few-body physics, quantum chemistry, and fundamental physics in novel regimes without the perturbing asymmetry of gravity

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Radio Science from an Optical Communications Signal

    No full text
    NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link

    Radio Science Measurements with Suppressed Carrier

    No full text
    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system

    Communications During Critical Mission Operations: Preparing for InSight's Landing on Mars

    No full text
    Radio communications with deep space missions are often taken for granted due to the impressively successful records since, for decades, the technology and infrastructure have been developed for ground and flight systems to optimize telemetry and commanding. During mission-critical events such as the entry, descent, and landing of a spacecraft on the surface of Mars, the signal's level and frequency dynamics vary significantly and typically exceed the threshold of the budgeted links. The challenge is increased when spacecraft shed antennas with heat shields and other hardware during those risky few minutes. We have in the past successfully received signals on Earth during critical events even ones not intended for ground reception. These included the UHF signal transmitted by Curiosity to Marsorbiting assets. Since NASA's Deep Space Network does not operate in the UHF band, large radio telescopes around the world are utilized. The Australian CSIRO Parkes Radio Telescope supported the Curiosity UHF signal reception and DSN receivers, tools, and expertise were used in the process. In preparation for the InSight mission's landing on Mars in 2016, preparations are underway to support the UHF communications. This paper presents communication scenarios with radio telescopes, and the DSN receiver and tools. It also discusses the usefulness of the real-time information content for better response time by the mission team towards successful mission operations

    Improving Io Plasma Torus models using Galileo Doppler data

    No full text
    The Io Plasma Torus (IPT) is a toroidal cloud of plasma, centered on the centrifugal equator of Jupiter at Io's orbital distance, that induces a path delay and a carrier frequency shift on radio frequency signals. Juno is currently orbiting Jupiter in a highly eccentric, 53.5-day orbit, with a perijove altitude of about 4000 km. During each perijove pass, Doppler measurements between Juno and the Earth are acquired for about eight hours centered around Jupiter's closest approach. Due to the orbital geometry, the radio frequency signal crosses the IPT, yielding a non-dynamical Doppler shift, that, if not properly calibrated, can be a potential source of bias in the Jupiter estimated gravity field coefficients. During the first perijove pass (conventionally named PJ01), a direct measurement of the downlink plasma contribution was possible by transmitting downlink signals at X and Ka-band coherent with a common X-band uplink. During the perijove passes dedicated to gravity investigations (currently PJ03, PJ06, PJ08, and PJ10) a dual-frequency link at X and Ka band allows to calibrate about 75% of the total plasma contribution on the signal, including the one due to the IPT. During non-gravity dedicated perijove passes a communication link at X band only is available, so that the signal due to the IPT can be corrected only using a model of its internal electron density distribution. Here we propose to improve the model already available in the literature using radio science Doppler data from other space missions, such as Galileo. NASA's Galileo spacecraft arrived to the Jupiter system on December 1995 and studied the Galilean satellites, Jupiter and its magnetosphere, for the following 8 years. However, the orbiter's umbrella-like High Gain Antenna (HGA) failed to correctly deploy, so that the spacecraft was able to operate using only the low-gain antenna (LGA) at S band, with its downlink data rate being much lower than originally planned. Moreover, this prevented any dual-frequency calibration of the radio link that could have corrected the dispersive signal induced by the IPT, potentially affecting the radio science experiment results. We re-analyzed Galileo Doppler measurements acquired by the Deep Space Network during the flybys of the Galilean satellites, using a local orbit determination fit, highlighting the presence of residual un-modeled signatures. The signatures were compared to the expected Doppler signal due the IPT, computed using models already available in literature, suggesting that the IPT can be effectively calibrated, removing the residual signatures, adjusting some of the model parameters
    corecore