29 research outputs found

    Planktonic foraminifers and shelled pteropods in the Barents Sea: Seasonal distribution and contribution to the carbon pump of the living fauna, and foraminiferal development during the last three millennia

    Get PDF
    The Arctic Ocean in general and the Barents Sea specifically, are highly affected by the human induced carbon dioxide (CO2) emissions and increasing temperatures. Atlantification, caused by an increase in warm Atlantic Water inflow, and polar amplification, caused by a higher impact of the increasing temperatures at high latitudes, have already been observed. Moreover, the Barents Sea has been described as a hotspot for ocean acidification. Ocean acidification is the decrease of pH, calcium carbonate saturation state, and carbonate ion concentration due to an increase in CO2 uptake from the atmosphere by the ocean. This alteration of the carbonate chemistry of the water affects the marine biota, especially planktonic marine calcifiers. They are organisms living in the water column with a shell made of calcium carbonate (CaCO3). They contribute significantly to the carbon cycle by exporting mainly CaCO3 from the surface water to the seabed when they die. The main goal of this thesis is to study the distribution of marine calcifiers (planktonic foraminifers and shelled pteropods) in the Barents Sea and the adjacent Arctic Basin. We have (1) investigated their distribution patterns and contribution to carbon dynamics in the north Svalbard margin and in a seasonal basin in the northern Barents Sea; and (2) reconstructed the foraminiferal production and preservation patterns from the late Holocene in sediment cores from the northern and southern Barents Sea. The results from this thesis show that pteropods are important contributors to the carbon dynamics in all seasons in the northern Barents Sea and northern Svalbard margin. Due to the higher sensitivity of their shells compared to foraminifers, they are more likely to be affected by ocean acidification. Moreover, the abundance of foraminifers in the sediment suggests higher productivity in the southern than in the northern Barents Sea. The almost zero abundances observed in the northern Barents Sea core, combined with the seasonality of marine calcifiers, the water carbonate chemistry, and the presence of agglutinated foraminifers suggest dissolution of CaCO3 in the sediment. Due to the use of their shells in paleoceanography, further investigations of CaCO3 dissolution are needed to use them as proxies for the reconstruction of the paleoenvironmental and paleoclimatic conditions in the Barents Sea

    Distribution and Abundances of Planktic Foraminifera and Shelled Pteropods During the Polar Night in the Sea-Ice Covered Northern Barents Sea

    Get PDF
    Planktic foraminfera and shelled pteropods are important calcifying groups of zooplankton in all oceans. Their calcium carbonate shells are sensitive to changes in ocean carbonate chemistry predisposing them as an important indicator of ocean acidification. Moreover, planktic foraminfera and shelled pteropods contribute significantly to food webs and vertical flux of calcium carbonate in polar pelagic ecosystems. Here we provide, for the first time, information on the under-ice planktic foraminifera and shelled pteropod abundance, species composition and vertical distribution along a transect (82°–76°N) covering the Nansen Basin and the northern Barents Sea during the polar night in December 2019. The two groups of calcifiers were examined in different environments in the context of water masses, sea ice cover, and ocean chemistry (nutrients and carbonate system). The average abundance of planktic foraminifera under the sea-ice was low with the highest average abundance (2 ind. m–3) close to the sea-ice margin. The maximum abundances of planktic foraminifera were concentrated at 20–50 m depth (4 and 7 ind. m–3) in the Nansen Basin and at 80–100 m depth (13 ind. m–3) close to the sea-ice margin. The highest average abundance (13 ind. m–3) and the maximum abundance of pteropods (40 ind. m–3) were found in the surface Polar Water at 0–20 m depth with very low temperatures (–1.9 to –1°C), low salinity (<34.4) and relatively low aragonite saturation of 1.43–1.68. The lowest aragonite saturation (<1.3) was observed in the bottom water in the northern Barents Sea. The species distribution of these calcifiers reflected the water mass distribution with subpolar species at locations and depths influenced by warm and saline Atlantic Water, and polar species in very cold and less saline Polar Water. The population of planktic foraminifera was represented by adults and juveniles of the polar species Neogloboquadrina pachyderma and the subpolar species Turborotalita quinqueloba. The dominating polar pteropod species Limacina helicina was represented by the juvenile and veliger stages. This winter study offers a unique contribution to our understanding of the inter-seasonal variability of planktic foraminfera and shelled pteropods abundance, distribution and population size structure in the Arctic Ocean.publishedVersio

    Planktic foraminiferal changes in the western Mediterranean Anthropocene

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MAltres ajuts: Acord transformatiu CRUE-CSICThe increase in anthropogenic induced warming over the last two centuries is impacting marine environment. Planktic foraminifera are a globally distributed calcifying marine zooplankton responding sensitively to changes in sea surface temperatures and interacting with the food web structure. Here, we study two high resolution multicore records from two western Mediterranean Sea regions (Alboran and Balearic basins), areas highly affected by both natural climate change and anthropogenic warming. Cores cover the time interval from the Medieval Climate Anomaly to present. Reconstructed sea surface temperatures are in good agreement with other results, tracing temperature changes through the Common Era (CE) and show a clear warming emergence at about 1850 CE. Both cores show opposite abundance fluctuations of planktic foraminiferal species (Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides), a common group of marine calcifying zooplankton. The relative abundance changes of Globorotalia truncatulinoides plus Globorotalia inflata describe the intensity of deep winter mixing in the Balearic basin. In the Alboran Sea, Globigerina bulloides and Globorotalia inflata instead respond to local upwelling dynamics. In the pre-industrial era, changes in planktic foraminiferal productivity and species composition can be explained mainly by the natural variability of the North Atlantic Oscillation, and, to a lesser extent, by the Atlantic Multidecadal Oscillation. In the industrial era, starting from about 1800 CE, this variability is affected by anthropogenic surface warming, leading to enhanced vertical stratification of the upper water column, and resulting in a decrease of surface productivity at both sites. We found that natural planktic foraminiferal population dynamics in the western Mediterranean is already altered by enhanced anthropogenic impact in the industrial era, suggesting that in this region natural cycles are being overprinted by human influences

    Planktic Foraminiferal and Pteropod Contributions to Carbon Dynamics in the Arctic Ocean (North Svalbard Margin)

    Get PDF
    Planktic foraminifera and shelled pteropods are some of the major producers of calcium carbonate (CaCO3) in the ocean. Their calcitic (foraminifera) and aragonitic (pteropods) shells are particularly sensitive to changes in the carbonate chemistry and play an important role for the inorganic and organic carbon pump of the ocean. Here, we have studied the abundance distribution of planktic foraminifera and pteropods (individuals m–3) and their contribution to the inorganic and organic carbon standing stocks (μg m–3) and export production (mg m–2 day–1) along a longitudinal transect north of Svalbard at 81° N, 22–32° E, in the Arctic Ocean. This transect, sampled in September 2018 consists of seven stations covering different oceanographic regimes, from the shelf to the slope and into the deep Nansen Basin. The sea surface temperature ranged between 1 and 5°C in the upper 300 m. Conditions were supersaturated with respect to CaCO3 (Ω &gt; 1 for both calcite and aragonite). The abundance of planktic foraminifera ranged from 2.3 to 52.6 ind m–3 and pteropods from 0.1 to 21.3 ind m–3. The planktic foraminiferal population was composed mainly of the polar species Neogloboquadrina pachyderma (55.9%) and the subpolar species Turborotalita quinqueloba (21.7%), Neogloboquadrina incompta (13.5%) and Globigerina bulloides (5.2%). The pteropod population was dominated by the polar species Limacina helicina (99.6%). The rather high abundance of subpolar foraminiferal species is likely connected to the West Spitsbergen Current bringing warm Atlantic water to the study area. Pteropods dominated at the surface and subsurface. Below 100 m water depth, foraminifera predominated. Pteropods contribute 66–96% to the inorganic carbon standing stocks compared to 4–34% by the planktic foraminifera. The inorganic export production of planktic foraminifera and pteropods together exceeds their organic contribution by a factor of 3. The overall predominance of pteropods over foraminifera in this high Arctic region during the sampling period suggest that inorganic standing stocks and export production of biogenic carbonate would be reduced under the effects of ocean acidification

    Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean

    Get PDF
    Funding was provided by NSF Grants OCE1220600 and OCE1220302 awarded to JA and WB, respectively, MINECO PID2020-113526RB-I00, the Generalitat de Catalunya MERS (#2017 SGR-1588) awarded to PZ and NERC grant NE/N011716/1 awarded to JR.Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3 production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3 production is higher than the sinking flux of CaCO3 at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3 production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3 cycle and its impact on atmospheric CO2 will largely depend on how the poorly-understood processes that determine whether CaCO3 is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification.Publisher PDFPeer reviewe

    Estudi del metabolisme energètic i de recursos de l'aviari del Zoo de Barcelona : mesures cap a la sostenibilitat

    Get PDF
    En col·laboració amb el Zoo de Barcelona, s'ha realitzat un estudi sobre el metabolisme energètic i de recursos de l'edifici aviari. El fet que el Zoo només disposi de dades del conjunt del seu metabolisme -i en cap cas dels sistemes que el formen- a més de la particular situació geogràfica del mateix, ha estat determinant a l'hora de realitzar l'estudi. Aquest s'ha centrat tant en l'anàlisi dels vectors energètic -que engloba electricitat i gas natural- i hídric, com en els fluxos d'aliments i residus generats. Les dades obtingudes per a cada vector han permès conèixer quina importància té el sistema aviari dins del conjunt, així com plantejar les actuacions de millora més viables, destinades a la reducció del consum energètic i hídric del sistema estudiat per tal d'avançar cap a la sostenibilitat.En colaboración con el Zoo de Barcelona, se ha realizado un estudio sobre el metabolismo energético y de recursos del edificio aviario. El hecho que el Zoo solamente disponga de datos del conjunto de su metabolismo -y en ningún caso de los sistemas que lo forman- además de la particular situación geográfica del mismo, ha sido determinante para realizar el estudio. Éste se ha centrado tanto en el análisis de los vectores energético -que engloba electricidad y gas natural- e hídrico, como en los flujos de alimentos y residuos generados. Los datos obtenidos para cada vector permiten conocer la importancia del sistema aviario dentro del conjunto y plantear las actuaciones de mejora más viables, destinadas a la reducción del consumo energético e hídrico del sistema estudiado para avanzar hacia la sostenibilidad.The study about the aviary's energetic and resources metabolism has been done in cooperation with the Barcelona's Zoo. The fact that the Zoo only has metabolism data at its disposal as a whole -and in any case data from its systems- as well as the particularity of its localization, has been determined at the time to realize this study. This paper will be focused both on the analysis of the energetic (which includes electricity and natural gas) and hydrological vector, and on the nourishment and generated waste flux. The obtained data in each vector has permitted to know which is the importance of the aviary inside the whole Zoo, as well as to consider the most viable improvement actions, focused on the reduction of the energetic and hydrological use in the studied system in order to improve upon the sustainability

    Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean

    Get PDF
    Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3 production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3 production is higher than the sinking flux of CaCO3 at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3 production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3 cycle and its impact on atmospheric CO2 will largely depend on how the poorly-understood processes that determine whether CaCO3 is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification

    Seasonality of marine calcifiers in the northern Barents Sea: Spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics

    Get PDF
    The Barents Sea is presently undergoing rapid warming and the sea-ice edge and the productive zones are retreating northward at accelerating rates. Planktonic foraminifers and shelled pteropods are ubiquitous marine calcifiers that play an important role in the carbon budget and being particularly sensitive to ocean biogeochemical changes and ocean acidification. Their distribution at high latitudes have rarely been studied, and usually only for the summer season. Here we present results of their distribution patterns in the upper 300 m in the water column (individuals m−3), protein content and size distribution on a seasonal basis to estimate their inorganic and organic carbon standing stocks (µg m−3) and export production (mg m−2 d−1). The study area constitutes a latitudinal transect in the northern Barents Sea from 76˚ N to 82˚ N including seven stations through both Atlantic, Arctic, and Polar surface water regimes and the marginal and seasonal sea-ice zones. The transect was sampled in 2019 (August and December) and 2021 (March, May, and July). The highest carbon standing stocks and export production were found at the Polar seasonally sea-ice covered shelf stations with the contribution from shelled pteropods being significantly higher than planktonic foraminifers during all seasons. We recorded the highest production of foraminifers and pteropods in summer (August 2019 and July 2021) and autumn (December 2019) followed by spring (May 2021), and the lowest in winter (March 2021)

    Calcifying zooplankton standing stocks and in the North Pacific from the R/V Kilo Moana cruise KM1712

    No full text
    This dataset compiles the standing stocks (ind/m³), the integrated standing stocks (ind/m²) and the integrated CaCO3 standing stocks (mg/m²) for three groups of zooplanktonic calcifying organisms: pteropods, heteropods and foraminifers. The organisms were collected by oblique towing (Ø 0.5 m, 90 μm mesh size, SeaGear mechanical flowmeter) in the North Pacific between Hawaii and the Gulf of Alaska during the R/V Kilo Moana cruise KM1712 in August 2017. The sampling strategy was designed to capture an integrated sample of all foraminifers, pteropods and heteropods from juveniles to adults living throughout the upper water column. Pteropods and heteropods were quantified and shell diameter measured using a Leica Z16 AP0 binocular light microscope at 20-100x. Pteropods and heteropods were identified and grouped respectively in three (Cavoliniidae, Cymbuliidae, Limacinidae) and two (Atlantidae, Carinidae) families. All Foraminifera were wet picked from the sample splits, divided into groups greater and less than 125 µm, counted, and weighed with a high precision microbalance
    corecore