10 research outputs found

    Impact of Endogenous Bile Salts on the Thermodynamics of Supersaturated Active Pharmaceutical Ingredient Solutions

    Get PDF
    A variety of formulation strategies have been developed to mitigate the inadequate aqueous solubility of certain therapeutic agents. Among these, achieving supersaturation in vivo is a promising approach to improve the extent of oral absorption. Because of the thermodynamic instability of supersaturated solutions, inhibitors are needed to kinetically hinder crystallization. In addition to commonly used polymeric additives, bile salts, naturally present in the gastrointestinal tract, have been shown to exhibit crystallization inhibition properties. However, the impact of bile salts on solution thermodynamics is not well understood, although this knowledge is essential in order to explore the mechanism of crystallization inhibition. To better describe solution thermodynamics in the presence of bile salts, a side-by-side diffusion cell was used to evaluate solute flux for solutions of telaprevir in the absence and presence of the six most abundant bile salts in human intestinal fluid at various solute concentrations; flux measurements provide information about the solute thermodynamic activity and hence can provide an improved measurement of supersaturation in complex solutions. Trihydroxy bile salts had minimal impact on solution phase boundaries as well as solute flux, while micellar dihydroxy bile salts solubilized telaprevir leading to reduced solute flux across the membrane. An inconsistency between the concentration-based supersaturation ratio and that based on solute thermodynamic activity (the fundamental driving force for crystallization) was noted, suggesting that the activity-based supersaturation should be determined to better interpret any modification in crystallization kinetics in the presence of these additives. These findings indicate that bile salts are not interchangeable from a thermodynamic perspective and provide a foundation for further studies evaluating the mechanism of crystallization inhibition

    Maintaining Supersaturation of Active Pharmaceutical Ingredient Solutions with Biologically Relevant Bile Salts

    Get PDF
    Currently, it is of interest to improve the oral absorption of poorly water-soluble therapeutic agents using supersaturating formulations. Understanding crystallization kinetics of supersaturated drug solutions is central to the design and evaluation of such formulations. Bile salts have drawn increasing attention in this context as they serve important roles in biorelevant dissolution media, in vivo, and have been shown to slow down the crystallization of active pharmaceutical ingredients. The goal of this study was to evaluate the impact of bile salt monomers and micelles on the crystallization of telaprevir, a poorly water-soluble drug, from aqueous solution. To better describe the crystallization driving force in the presence of the bile salts, a side-by-side diffusion cell was used to evaluate telaprevir mass flow rate, and hence solute activity, in the absence and presence of different bile salts. The effectiveness of monomeric and miceller bile salts as crystallization inhibitors was then evaluated by performing crystallization induction time experiments at constant, activity-based supersaturation. The six most abundant biologically relevant bile salts were investigated (sodium taurocholate, sodium taurodeoxycholate, sodium taurochenodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium glycochenodeoxycholate). All six bile salts exhibited nucleation inhibition properties in both homogeneous supersaturated telaprevir solutions and highly supersaturated telaprevir solutions containing a second phase. The ability to retard telaprevir nucleation, however, varied among the bile salts and also depended on the aggregation state. Monomeric bile salts were found to be effective crystallization inhibitors. At higher bile salt concentrations, trihydroxy bile salts showed better inhibition compared to dihydroxy bile salts. These results highlight the importance of considering the composition of the test medium used to evaluate product performance, in particular in the context of evaluating crystallization kinetics

    Compositional effect of complex biorelevant media on the crystallization kinetics of an active pharmaceutical ingredient

    Get PDF
    Bile salts are endogenous surfactants present in the human gastrointestinal tract in the form of mixed micelles that also contain phospholipids. Due to the inevitable encounter of oral drug formulations with bile salts, it is important to understand the impact of bile salts on the crystallization tendency of poorly soluble compounds that form supersaturated solutions in vivo in order to maximize oral drug absorption. Although there has been an increasing number of studies focusing on the role of individual bile salts on drug crystallization, the effects of mixed micelles and biorelevant media composition on crystallization kinetics have only been studied to a limited extent. In this study, we evaluated the ability of binary and ternary bile salt combinations to maintain supersaturated aqueous solutions of telaprevir. Crystallization kinetics were also compared in more complex media that also contained the phospholipid, lecithin. These included fasted state simulated intestinal fluid (FaSSIF) (a widely used medium for formulation testing which contains a single bile salt, sodium taurocholate), and media that contained several endogenous bile salts. Finally, the combined effects of a polymer, hydroxypropyl methyl cellulose acetate succinate, and the testing media on crystallization kinetics were evaluated to provide insights into supersaturation formulation design. Solution bile salt composition was found to significantly influence crystallization kinetics. However, the presence of the polymer increased induction times sufficiently that differences between media were minimized. This study suggests that when evaluating the crystallization kinetics of systems with a propensity to undergo supersaturation in vivo, attention should be paid to selecting biorelevant media

    Impact of Bile Salts on Solution Crystal Growth Rate and Residual Supersaturation of an Active Pharmaceutical Ingredient

    Get PDF
    Supersaturating formulations have become a popular approach to address the issue of inadequate aqueous solubility for small molecules. Given that prevention of nucleation may not be always possible, it is of particular interest to control crystal growth from supersaturated solutions in order to maximize the extent of oral absorption of therapeutic agents. Bile salts are endogenous surfactants that are present in biorelevant dissolution media and can have direct impact on the in vivo performance of therapeutic agents due to their presence in the gastrointestinal tract. In this study, an in situ common history seeding method was implemented to provide seeds that better mimic crystals formed from aqueous supersaturated solutions. By forming seeds in situ and then regenerating supersaturation, we were able to probe the influence of biorelevant bile salts on telaprevir crystal growth rates and secondary nucleation. The extent of growth inhibition was found to vary with bile salt chemistry and aggregation level. It was also noted that sodium taurocholate and sodium taurochenodeoxycholate inhibited secondary nucleation of telaprevir from highly supersaturated solutions. The impact of bile salts on crystal growth and secondary nucleation is of relevance for improved understanding of precipitation kinetics of supersaturating dosage forms

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    The spectral energy distribution of fermi bright blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν Fν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, αro, and optical to X-ray, αox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (νSpeak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 1017 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between νSpeak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars. © 2010 The American Astronomical Society

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Gamma-Ray Blazars within the First 2 Billion Years

    Get PDF
    The detection of high-redshift (z > 3) blazars enables the study of the evolution of the most luminous relativistic jets over cosmic time. More importantly, high-redshift blazars tend to host massive black holes and can be used to constrain the space density of heavy black holes in the early universe. Here, we report the first detection with the Fermi-Large Area Telescope of five \u3b3-ray-emitting blazars beyond z = 3.1, more distant than any blazars previously detected in \u3b3-rays. Among these five objects, NVSS J151002+570243 is now the most distant known \u3b3-ray-emitting blazar at z = 4.31. These objects have steeply falling \u3b3-ray spectral energy distributions (SEDs), and those that have been observed in X-rays have a very hard X-ray spectrum, both typical of powerful blazars. Their Compton dominance (ratio of the inverse Compton to synchrotron peak luminosities) is also very large (> 20). All of these properties place these objects among the most extreme members of the blazar population. Their optical spectra and the modeling of their optical-UV SEDs confirm that these objects harbor massive black holes ({M}{BH}\u2dc {10}8-10 {M} 99 ). We find that, at z 48 4, the space density of > {10}9 {M} 99 black holes hosted in radio-loud and radio-quiet active galactic nuclei are similar, implying that radio-loudness may play a key role in rapid black hole growth in the early universe

    The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I – results from the test flight on the space shuttle

    No full text
    corecore