163 research outputs found

    Prior Pulmonary Tuberculosis Is a Risk Factor for Asymptomatic Cryptococcal Antigenemia in a Cohort of Adults With Advanced Human Immunodeficiency Virus Disease.

    Get PDF
    The greater mortality risk among people with advanced human immunodeficiency virus disease and cryptococcal antigenemia, despite treatment, indicates an increased susceptibility to other infections. We found that prior tuberculosis was an independent risk factor for cryptococcal antigenemia (adjusted odds ratio, 2.72; 95% confidence interval, 1.13-6.52; P = .03) among patients with CD4 counts <100 cells/”L

    Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study

    Get PDF
    Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early

    Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe [version 1; peer review: 2 approved, 1 approved with reservations]

    Get PDF
    Two billion people are infected with Mycobacterium tuberculosis, leading to 10 million new cases of active tuberculosis and 1.5 million deaths annually. Universal access to drug susceptibility testing (DST) has become a World Health Organization priority. We previously developed a software tool, Mykrobe predictor, which provided offline species identification and drug resistance predictions for M. tuberculosis from whole genome sequencing (WGS) data. Performance was insufficient to support the use of WGS as an alternative to conventional phenotype-based DST, due to mutation catalogue limitations. Here we present a new tool, Mykrobe, which provides the same functionality based on a new software implementation. Improvements include i) an updated mutation catalogue giving greater sensitivity to detect pyrazinamide resistance, ii) support for user-defined resistance catalogues, iii) improved identification of non-tuberculous mycobacterial species, and iv) an updated statistical model for Oxford Nanopore Technologies sequencing data. Mykrobe is released under MIT license at https://github.com/mykrobe-tools/mykrobe. We incorporate mutation catalogues from the CRyPTIC consortium et al. (2018) and from Walker et al. (2015), and make improvements based on performance on an initial set of 3206 and an independent set of 5845 M. tuberculosis Illumina sequences. To give estimates of error rates, we use a prospectively collected dataset of 4362 M. tuberculosis isolates. Using culture based DST as the reference, we estimate Mykrobe to be 100%, 95%, 82%, 99% sensitive and 99%, 100%, 99%, 99% specific for rifampicin, isoniazid, pyrazinamide and ethambutol resistance prediction respectively. We benchmark against four other tools on 10207 (=5845+4362) samples, and also show that Mykrobe gives concordant results with nanopore data. We measure the ability of Mykrobe-based DST to guide personalized therapeutic regimen design in the context of complex drug susceptibility profiles, showing 94% concordance of implied regimen with that driven by phenotypic DST, higher than all other benchmarked tools

    Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, <it>BRCA1 </it>and <it>BRCA2</it>, are considered in breast, ovarian and other common cancers etiology. <it>BRCA1 </it>and <it>BRCA2 </it>genes have been identified that confer a high degree of breast cancer risk.</p> <p>Objective</p> <p>Our study was performed to identify germline mutations in some exons of <it>BRCA1 </it>and <it>BRCA2 </it>genes for the early detection of presymptomatic breast cancer in females.</p> <p>Methods</p> <p>This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of <it>BRCA1 </it>and <it>BRCA2 </it>genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the <it>BRCA1 </it>gene (exons 2,8,13 and 22) and one region (exon 9) of <it>BRCA2 </it>gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed.</p> <p>Results</p> <p>Mutations in both <it>BRCA1 </it>and <it>BRCA2 </it>genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to <it>BRCA1 </it>mutations, while 26.7% of them were attributable to <it>BRCA2 </it>mutations. Results showed that four mutations were detected in the <it>BRCA1 </it>gene, while one mutation was detected in the <it>BRCA2 </it>gene. Asymptomatic relatives, 80(67%) out of total 120, were mutation carriers.</p> <p>Conclusions</p> <p><it>BRCA1 </it>and <it>BRCA2 </it>genes mutations are responsible for a significant proportion of breast cancer. <it>BRCA </it>mutations were found in individuals with and without family history.</p

    Sensitive Troponin Assay and the Classification of Myocardial Infarction

    Get PDF
    Background: Lowering the diagnostic threshold for troponin is controversial because it may disproportionately increase the diagnosis of myocardial infarction in patients without acute coronary syndrome. We assessed the impact of lowering the diagnostic threshold of troponin on the incidence, management, and outcome of patients with type 2 myocardial infarction or myocardial injury. Methods: Consecutive patients with elevated plasma troponin I concentrations (≄50 ng/L; n = 2929) were classified with type 1 (50%) myocardial infarction, type 2 myocardial infarction or myocardial injury (48%), and type 3 to 5 myocardial infarction (2%) before and after lowering the diagnostic threshold from 200 to 50 ng/L with a sensitive assay. Event-free survival from death and recurrent myocardial infarction was recorded at 1 year. Results: Lowering the threshold increased the diagnosis of type 2 myocardial infarction or myocardial injury more than type 1 myocardial infarction (672 vs 257 additional patients, P &#60; .001). Patients with myocardial injury or type 2 myocardial infarction were at higher risk of death compared with those with type 1 myocardial infarction (37% vs 16%; relative risk [RR], 2.31; 95% confidence interval [CI], 1.98-2.69) but had fewer recurrent myocardial infarctions (4% vs 12%; RR, 0.35; 95% CI, 0.26-0.49). In patients with troponin concentrations 50 to 199 ng/L, lowering the diagnostic threshold was associated with increased healthcare resource use (P &#60; .05) that reduced recurrent myocardial infarction and death for patients with type 1 myocardial infarction (31% vs 20%; RR, 0.64; 95% CI, 0.41-0.99), but not type 2 myocardial infarction or myocardial injury (36% vs 33%; RR, 0.93; 95% CI, 0.75-1.15). Conclusions: After implementation of a sensitive troponin assay, the incidence of type 2 myocardial infarction or myocardial injury disproportionately increased and is now as frequent as type 1 myocardial infarction. Outcomes of patients with type 2 myocardial infarction or myocardial injury are poor and do not seem to be modifiable after reclassification despite substantial increases in healthcare resource use

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
    • 

    corecore