15 research outputs found

    Processes in arithmetic strategy selection: a fMRI study

    Get PDF
    International audienceThis neuroimaging (functional magnetic resonance imaging) study investigated neural correlates of strategy selection. Young adults performed an arithmetic task in two different conditions. In both conditions, participants had to provide estimates of two-digit multiplication problems like 54 Ă— 78. In the choice condition, participants had to select the better of two available rounding strategies, rounding-up (RU) strategy (i.e., doing 60 Ă— 80 = 4,800) or rounding-down (RD) strategy (i.e., doing 50 Ă— 70 = 3,500 to estimate product of 54 Ă— 78). In the no-choice condition, participants did not have to select strategy on each problem but were told which strategy to use; they executed RU and RD strategies each on a series of problems. Participants also had a control task (i.e., providing correct products of multiplication problems like 40 Ă— 50). Brain activations and performance were analyzed as a function of these conditions. Participants were able to frequently choose the better strategy in the choice condition; they were also slower when they executed the difficult RU than the easier RD. Neuroimaging data showed greater brain activations in right anterior cingulate cortex (ACC), dorso-lateral prefrontal cortex (DLPFC), and angular gyrus (ANG), when selecting (relative to executing) the better strategy on each problem. Moreover, RU was associated with more parietal cortex activation than RD.These results suggest an important role of fronto-parietal network in strategy selection and have important implications for our further understanding and modeling cognitive processes underlying strategy selection

    Changes of metabolism and functional connectivity in late-onset deafness: Evidence from cerebral 18 F-FDG-PET

    No full text
    International audienceHearing loss is known to impact brain function. The aim of this study was to characterize cerebral metabolic Positron Emission Tomography (PET) changes in elderly patients fulfilling criteria for cochlear implant and investigate the impact of hearing loss on functional connectivity. Statistical Parametric Mapping-T-scores-maps comparisons of 18F-FDG-PET of 27 elderly patients fulfilling criteria for cochlear implant for hearing loss (best-aided speech intelligibility lower or equal to 50%) and 27 matched healthy subjects (p < 0.005, corrected for volume extent) were performed. Metabolic connectivity was evaluated through interregional correlation analysis. Patients were found to have decreased metabolism within the right associative auditory cortex, while increased metabolism was found in prefrontal areas, pre- and post-central areas, the cingulum and the left inferior parietal gyrus. The right associative auditory cortex was integrated into a network of increased metabolic connectivity that included pre- and post-central areas, the cingulum, the right inferior parietal gyrus, as well as the striatum on both sides. Metabolic values of the right associative auditory cortex and left inferior parietal gyrus were positively correlated with performance on neuropsychological test scores. These findings provide further insight into the reorganization of the connectome through sensory loss and compensatory mechanisms in elderly patients with severe hearing loss

    Beyond sense-specific processing: decoding texture in the brain from touch and sonified movement

    No full text
    Texture, a fundamental object attribute, is perceived through multisensory information including touch and auditory cues. Coherent perceptions may rely on shared texture representations across different senses in the brain. To test this hypothesis, we delivered haptic textures coupled with a sound synthesizer to generate real-time textural sounds. Participants completed roughness estimation tasks with haptic, auditory, or bimodal cues in an MRI scanner. Somatosensory, auditory, and visual cortices were all activated during haptic and auditory exploration, challenging the traditional view that primary sensory cortices are sense-specific. Furthermore, audio-tactile integration was found in secondary somatosensory (S2) and primary auditory cortices. Multivariate analyses revealed shared spatial activity patterns in primary motor and somatosensory cortices, for discriminating texture across both modalities. This study indicates that primary areas and S2 have a versatile representation of multisensory textures, which has significant implications for how the brain processes multisensory cues to interact more efficiently with our environment

    Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer's disease

    No full text
    International audienceNeuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic volumes were similar in the 2 groups. Greater extent of atrophy in EOAD, despite similar extent of hypometabolism, could reflect different underlying pathophysiological processes, different glucose-based compensatory mechanisms or distinct level of premorbid atrophic lesions

    APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases

    Get PDF
    International audienceBackgroundAmyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series.Methods and findingsWe report here a novel update (2012–2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers—total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42—in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification.ConclusionsOur findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants

    The use of biomarkers for the etiologic diagnosis of MCI in Europe: an EADC survey

    Get PDF
    We investigated the use of Alzheimer's disease (AD) biomarkers in European Alzheimer's Disease Consortium centers and assessed their perceived usefulness for the etiologic diagnosis of mild cognitive impairment (MCI). We surveyed availability, frequency of use, and confidence in diagnostic usefulness of markers of brain amyloidosis (amyloid positron emission tomography [PET], cerebrospinal fluid [CSF] Aβ42) and neurodegeneration (medial temporal atrophy [MTA] on MR, fluorodeoxyglucose positron emission tomography [FDG-PET], CSF tau). The most frequently used biomarker is visually rated MTA (75% of the 37 responders reported using it "always/frequently") followed by CSF markers (22%), FDG-PET (16%), and amyloid-PET (3%). Only 45% of responders perceive MTA as contributing to diagnostic confidence, where the contribution was rated as "moderate". Seventy-nine percent of responders felt "very/extremely" comfortable delivering a diagnosis of MCI due to AD when both amyloid and neuronal injury biomarkers were abnormal (P &lt; .02 versus any individual biomarker). Responders largely agreed that a combination of amyloidosis and neuronal injury biomarkers was a strongly indicative AD signature
    corecore