3,528 research outputs found

    Measurement of Correlations Between Neutral Pions and Charged Hadrons with Respect to the Event Plane in Heavy Ion Collisions with ALICE

    Get PDF
    In Ultra-Relativistic Heavy Ion collisions, such as those done at the Large HadronCollider (LHC) and Relativistic Heavy Ion Collider (RHIC), the high energy densities create an exotic state of matter not seen since the first few microseconds past the Big Bang, a Quark Gluon Plasma (QGP) where quarks and gluons are not confined into hadronic bound states. The properties and evolution of this matter can be studied using a naturally existing probe: the hard QCD (Quantum Chromo-Dynamics) jets that are produced in partonic hard scatters at the beginning of the collisions. Similarly to the x-rays in medical Computed Tomography, the escaping jets reflect the transverse structure of the medium. However, this analogy breaks down in two key ways. The QGP, unlike the human body, is rapidly evolving on the same timescale of the jet’s passing through of the medium. Additionally, the interaction of the jet with the QGP is not fully understood and may modify the structure of jets beyond a simple attenuation. The field of studying these jet-medium interactions, called jet tomography, is advanced by the research in this thesis using correlations high momentum π0 mesons and hadrons arising from the same jet-producing hard scatter pro- cess. The focus in this study is on experimentally varying the path-length traversed by the involved jets by examining the correlations with respect to the reaction plane of the colliding ions. This is done using Pb–Pb collisions measured by ALICE detector at the LHC at √sNN = 5.02 TeV

    All-optical interrogation of neural circuits in behaving mice

    Get PDF
    Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior

    Organizational Mortality of Small Firms: The Effects of Entrepreneurial Age and Human Capital

    Get PDF
    This paper addresses the issue of internal determination of organizational outcomes. It is argued that in small and simply structured organizations a considerable proportion of the variance in organizational activities and outcomes is associated with individuals. In particular, the paper uses human capital theory to derive hypotheses about individual determinants of organizational mortality. These hypotheses are tested with event-history data of firm registrations and de-registrations in a West German region. The hypotheses are corroborated by the data, but the effects may nonetheless be due to processes linking individual characteristics with organizational performance other than those suggested by the human capital approach

    Capacity building for conservation: problems and potential solutions for sub-Saharan Africa

    Get PDF
    To successfully achieve their stated conservation goals individuals, communities and organisations need to acquire a diversity of skills, knowledge and information (capacity). Despite current efforts to build and maintain appropriate levels of conservation capacity, it has been recognised that there will need to be a significant scaling-up of these activities in sub-Saharan Africa. This is because of the rapidly growing number and extent of environmental problems in the region. This paper presents a range of socio-economic contexts relevant to four key areas of African conservation capacity building: protected area management, community engagement, effective leadership, and professional e-Learning. Under these core themes, 39 specific recommendations are presented. These were derived from multi-stakeholder workshop discussions at an international conference held in Nairobi (Kenya) in 2015. At the meeting, 185 delegates (practitioners, scientists, community groups and government agencies) represented 105 organisations from 24 African nations and 8 non-African nations. The 39 recommendations constitute five broad types of suggested action: those that recommend (i) the development of new methods, (ii) the provision of capacity building resources e.g. information or data, (iii) the communication of ideas or examples of successful initiatives, (iv) the implementation of new research or gap analyses, (v) the establishment of new structures within and between organisations, and (vi) the development of new partnerships. A number of cross-cutting issues also emerged from the discussions. For example, all four workshops highlighted the need for a greater sense of urgency in developing capacity building activities in response to ongoing and rapid socio-environmental change in the region. Delegates also felt that conservation organisations, responsible agencies and donors need to recognise capacity building as one of the most urgent conservation issues we face. The need to develop novel and cost-efficient capacity building methodologies (and associated evaluation metrics), was also identified as a key issue. However, it was stressed that future of capacity building efforts will be best served by integrating new methods with more established activities. Importantly, given the broad suite of social, cultural and economic contexts found across sub-Saharan Africa, the need to move away from ‘one-size-fits-all’ approaches was strongly recommended in all thematic areas. Lastly, it was recognised that closing the gap between capacity need and capacity provision in the region will only be achieved through multi-partner capacity initiatives and networks.Additional co-authors: Vivian Kosgei, Anthony Kuria, Chris Magero, Maaike Manten, Paul Mugo, Eduard MĂŒller, Julie Mulonga, Leo Niskanen, Josephine Nzilani, Mary Otieno, Nisha Owen, Juliet Owuor, Stuart Paterson, SĂ©bastien Regnaut, Richard Rono, Joseph Ruhiu, Jesse Theuri Njoka, Lucy Waruingi, Brian Waswala Olewe and Emily Wilso

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe

    Foundry SiN as a platform for heterogeneous integration at visible wavelengths

    Get PDF
    Silicon nitride (Si 3 N 4 ) is an excellent material platform for visible wavelength photonic integrated circuits, in particular, as a host for the heterogeneous/hybrid integration of complementary materials. In this work, we characterise the performance of the Si 3 N 4 from LIGENTEC as a base for hybrid integration

    Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions

    Full text link
    "This is the peer reviewed version of the following article: Simion, Andrada, Natalia Candu, Simona M. Coman, Ana Primo, Ivan Esteve-Adell, VĂ©ronique Michelet, Vasile I. Parvulescu, and Hermenegildo Garcia. 2018. Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry 2018 (44). Wiley: 6185 90. doi:10.1002/ejoc.201801443, which has been published in final form at https://doi.org/10.1002/ejoc.201801443. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Michael and Henry addition reactions have been investigated using mono (Au and Cu2O) and bimetallic nanoplatelets (Au/Cu2O) grafted onto few-layers graphene (fl-G) films as heterogeneous catalysts by comparison with homogeneous NaOH and K2CO3 ones. In the presence of the heterogeneous catalysts, these reactions occurred in the absence of any extrinsic (NaOH and K2CO3) base with turnover numbers (TONs) at least four orders of magnitude higher. While the homogeneous catalysts provided TONs close to the unity for Au/Cu2O/fl-G this was of the order of 10(7). These reactions also occurred with a very good selectivity to the targeted products. These performances are in line with the basicity of these catalysts demonstrated from CO2 chemisorption measurements. The effect of the nanosize and the interaction of the nanoparticles with the graphene are also important to achieve this high activity.This work was supported by the Ministere de l' Education, de la Recherche et des Affaires Etrangeres (Brancusi Program) of France (PN-III-CEI-BIM-PM, nr. 80BM/2017), UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017) and COST Action CA15106 (CHAOS)Simion, A.; Candu, N.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Michelet, V.; Parvulescu, VI.... (2018). Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry. 2018(44):6185-6190. https://doi.org/10.1002/ejoc.201801443S61856190201844Michael, A. (1887). Ueber die Addition von Natriumacetessig- und NatriummalonsĂ€ureĂ€thern zu den Aethern ungesĂ€ttigter SĂ€uren. Journal fĂŒr Praktische Chemie, 35(1), 349-356. doi:10.1002/prac.18870350136Michael, A. (1894). Ueber die Addition von Natriumacetessig- und NatriummalonsĂ€ureĂ€ther zu den Aethern ungesĂ€ttigter SĂ€uren. Journal fĂŒr Praktische Chemie, 49(1), 20-25. doi:10.1002/prac.18940490103Tokoroyama, T. (2010). Discovery of the Michael Reaction. European Journal of Organic Chemistry, 2010(10), 2009-2016. doi:10.1002/ejoc.200901130Huebner, C. F., Sullivan, W. R., Stahmann, M. A., & Link, K. P. (1943). Studies on 4-Hydroxycoumarin. III. Dehydration of the Aldehyde Condensation Products1. Journal of the American Chemical Society, 65(12), 2292-2296. doi:10.1021/ja01252a009Mukaiyama, T. (1977). Titanium Tetrachloride in Organic Synthesis[New synthetic methods(21)]. Angewandte Chemie International Edition in English, 16(12), 817-826. doi:10.1002/anie.197708171Mukaiyama, T. (1977). Titantetrachlorid in der organischen Synthese. Angewandte Chemie, 89(12), 858-866. doi:10.1002/ange.19770891205Pansare, S. V., & Pandya, K. (2006). Simple Diamine- and Triamine-Protonic Acid Catalysts for the Enantioselective Michael Addition of Cyclic Ketones to Nitroalkenes. Journal of the American Chemical Society, 128(30), 9624-9625. doi:10.1021/ja062701nIkawa, M., Stahmann, M. A., & Link, K. P. (1944). Studies on 4-Hydroxycoumarins. V. The Condensation of α,ÎČ-Unsaturated Ketones with 4-Hydroxycoumarin1. Journal of the American Chemical Society, 66(6), 902-906. doi:10.1021/ja01234a019Iwamura, M., Gotoh, Y., Hashimoto, T., & Sakurai, R. (2005). Michael addition reactions of acetoacetates and malonates with acrylates in water under strongly alkaline conditions. Tetrahedron Letters, 46(37), 6275-6277. doi:10.1016/j.tetlet.2005.07.045Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie International Edition, 50(28), 6392-6395. doi:10.1002/anie.201102405Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie, 123(28), 6516-6519. doi:10.1002/ange.201102405Martinez, R., Simon, M.-O., Chevalier, R., Pautigny, C., Genet, J.-P., & Darses, S. (2009). C−C Bond Formation via C−H Bond Activation Using an in Situ-Generated Ruthenium Catalyst. Journal of the American Chemical Society, 131(22), 7887-7895. doi:10.1021/ja9017489Halland, N., Hansen, T., & JĂžrgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,ÎČ-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie International Edition, 42(40), 4955-4957. doi:10.1002/anie.200352136Halland, N., Hansen, T., & JĂžrgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,ÎČ-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie, 115(40), 5105-5107. doi:10.1002/ange.200352136Izquierdo, J., & PericĂ s, M. A. (2015). A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 6(1), 348-356. doi:10.1021/acscatal.5b02121Nicolaou, K. C., Rhoades, D., & Kumar, S. M. (2018). Total Syntheses of Thailanstatins A–C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. Journal of the American Chemical Society, 140(26), 8303-8320. doi:10.1021/jacs.8b04634Ye, R., Faucher, F. F., & Somorjai, G. A. (2018). Supported iron catalysts for Michael addition reactions. Molecular Catalysis, 447, 65-71. doi:10.1016/j.mcat.2017.12.029Morita, N., Yasuda, A., Shibata, M., Ban, S., Hashimoto, Y., Okamoto, I., & Tamura, O. (2015). Gold(I)/(III)-Catalyzed Synthesis of Cyclic Ethers; Valency-Controlled Cyclization Modes. Organic Letters, 17(11), 2668-2671. doi:10.1021/acs.orglett.5b01046Li, Z., Song, L., Van Meervelt, L., Tian, G., & Van der Eycken, E. V. (2018). Cationic Gold(I)-Catalyzed Cascade Bicyclizations for Divergent Synthesis of (Spiro)polyheterocycles. ACS Catalysis, 8(7), 6388-6393. doi:10.1021/acscatal.8b01789Pagadala, R., Maddila, S., Moodley, V., van Zyl, W. E., & Jonnalagadda, S. B. (2014). An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalyst. Tetrahedron Letters, 55(29), 4006-4010. doi:10.1016/j.tetlet.2014.05.089Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., ConcepciĂłn, P., Rivero-Crespo, M. Á., Leyva-PĂ©rez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696Leyva-PĂ©rez, A., Oliver-Meseguer, J., Cabrero-Antonino, J. R., Rubio-MarquĂ©s, P., Serna, P., Al-Resayes, S. I., & Corma, A. (2013). Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles. ACS Catalysis, 3(8), 1865-1873. doi:10.1021/cs400362cMegia-Fernandez, A., Ortega-Muñoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., & Santoyo-Gonzalez, F. (2010). Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis & Catalysis, 352(18), 3306-3320. doi:10.1002/adsc.201000530Kawabata, T., Kato, M., Mizugaki, T., Ebitani, K., & Kaneda, K. (2005). Monomeric Metal Aqua Complexes in the Interlayer Space of Montmorillonites as Strong Lewis Acid Catalysts for Heterogeneous Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 11(1), 288-297. doi:10.1002/chem.200400672Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie International Edition, 44(25), 3881-3884. doi:10.1002/anie.200463075Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie, 117(25), 3949-3952. doi:10.1002/ange.200463075Ganesan, S., Ganesan, A., & Kothandapani, J. (2014). Hyperbranched Polyamines: Tunable Catalysts for the Henry Reaction. Synlett, 25(13), 1847-1850. doi:10.1055/s-0034-1378534Li, H., Wang, B., & Deng, L. (2006). Enantioselective Nitroaldol Reaction of α-Ketoesters Catalyzed by Cinchona Alkaloids. Journal of the American Chemical Society, 128(3), 732-733. doi:10.1021/ja057237lGurbanov, A. V., Hazra, S., Maharramov, A. M., Zubkov, F. I., Guseinov, F. I., & Pombeiro, A. J. L. (2018). The Henry reaction catalyzed by NiII and CuII complexes bearing arylhydrazones of acetoacetanilide. Journal of Organometallic Chemistry, 869, 48-53. doi:10.1016/j.jorganchem.2018.05.025Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews, 43(4), 443-488. doi:10.1081/cr-120001809Choudary, B. M., Kantam, M. L., & Kavita, B. (2001). Synthesis of 2-nitroalkanols by MgAlO-t-Bu hydrotalcite. Journal of Molecular Catalysis A: Chemical, 169(1-2), 193-197. doi:10.1016/s1381-1169(00)00558-6Cwik, A., Fuchs, A., Hell, Z., & Clacens, J.-M. (2005). Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron, 61(16), 4015-4021. doi:10.1016/j.tet.2005.02.055Evans, D. A., Seidel, D., Rueping, M., Lam, H. W., Shaw, J. T., & Downey, C. W. (2003). A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. Journal of the American Chemical Society, 125(42), 12692-12693. doi:10.1021/ja0373871Risgaard, T., Gothelf, K. V., & JĂžrgensen, K. A. (2003). Catalytic asymmetric Henry reactions of silyl nitronates with aldehydes. Org. Biomol. Chem., 1(1), 153-156. doi:10.1039/b208859mArai, T., Watanabe, M., & Yanagisawa, A. (2007). Practical Asymmetric Henry Reaction Catalyzed by a Chiral Diamine-Cu(OAc)2Complex. Organic Letters, 9(18), 3595-3597. doi:10.1021/ol7014362Jin, W., Li, X., & Wan, B. (2011). A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)−Diamine Ligand. The Journal of Organic Chemistry, 76(2), 484-491. doi:10.1021/jo101932aWhite, J. D., & Shaw, S. (2012). A New Catalyst for the Asymmetric Henry Reaction: Synthesis of ÎČ-Nitroethanols in High Enantiomeric Excess. Organic Letters, 14(24), 6270-6273. doi:10.1021/ol3030023Jones, M. D., Cooper, C. J., Mahon, M. F., Raithby, P. R., Apperley, D., Wolowska, J., & Collison, D. (2010). Cu(II) homogeneous and heterogeneous catalysts for the asymmetric Henry reaction. Journal of Molecular Catalysis A: Chemical, 325(1-2), 8-14. doi:10.1016/j.molcata.2010.03.013Gupta, A. K., De, D., & Bharadwaj, P. K. (2017). A NbO type Cu(ii) metal–organic framework showing efficient catalytic activity in the FriedlĂ€nder and Henry reactions. Dalton Transactions, 46(24), 7782-7790. doi:10.1039/c7dt01595jGupta, M., De, D., Pal, S., Pal, T. K., & Tomar, K. (2017). A porous two-dimensional Zn(ii)-coordination polymer exhibiting SC–SC transmetalation with Cu(ii): efficient heterogeneous catalysis for the Henry reaction and detection of nitro explosives. Dalton Transactions, 46(23), 7619-7627. doi:10.1039/c7dt01074ePark, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58Bottari, G., Herranz, M. Á., Wibmer, L., Volland, M., RodrĂ­guez-PĂ©rez, L., Guldi, D. M., 
 Torres, T. (2017). Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 46(15), 4464-4500. doi:10.1039/c7cs00229gBostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., 
 Rotenberg, E. (2010). Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science, 328(5981), 999-1002. doi:10.1126/science.1186489Esrafili, M. D., Nematollahi, P., & Nurazar, R. (2016). Pd-embedded graphene: An efficient and highly active catalyst for oxidation of CO. Superlattices and Microstructures, 92, 60-67. doi:10.1016/j.spmi.2016.02.006Woo, H., Kim, J. W., Kim, M., Park, S., & Park, K. H. (2015). Au nanoparticles supported on magnetically separable Fe2O3–graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol. RSC Advances, 5(10), 7554-7558. doi:10.1039/c4ra13989ePourjavadi, A., Doroudian, M., Abedin-Moghanaki, A., & Bennett, C. (2017). Magnetic GO-PANI decorated with Au NPs: A highly efficient and reusable catalyst for reduction of dyes and nitro aromatic compounds. Applied Organometallic Chemistry, 31(12), e3881. doi:10.1002/aoc.3881Sarvestani, M., & Azadi, R. (2016). Palladium nanoparticles deposited on a graphene-benzimidazole support as an efficient and recyclable catalyst for aqueous-phase Suzuki-Miyaura coupling reaction. Applied Organometallic Chemistry, 31(8), e3667. doi:10.1002/aoc.3667Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908Mahdavi, H., & Rahmani, O. (2016). Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water. Catalysis Letters, 146(11), 2292-2305. doi:10.1007/s10562-016-1851-1Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., 
 GarcĂ­a, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & GarcĂ­a, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gPrimo, A., SĂĄnchez, E., Delgado, J. M., & GarcĂ­a, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Boruwa, J., Gogoi, N., Saikia, P. P., & Barua, N. C. (2006). Catalytic asymmetric Henry reaction. Tetrahedron: Asymmetry, 17(24), 3315-3326. doi:10.1016/j.tetasy.2006.12.005Palomo, C., Oiarbide, M., & Laso, A. (2007). Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. European Journal of Organic Chemistry, 2007(16), 2561-2574. doi:10.1002/ejoc.200700021Akutu, K., Kabashima, H., Seki, T., & Hattori, H. (2003). Nitroaldol reaction over solid base catalysts. Applied Catalysis A: General, 247(1), 65-74. doi:10.1016/s0926-860x(03)00124-8Ballini, R., Bosica, G., Fiorini, D., Palmieri, A., & Petrini, M. (2005). Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 105(3), 933-972. doi:10.1021/cr040602rChoudary, B. M., Rajasekhar, C. V., Gopi Krishna, G., & Rajender Reddy, K. (2007). L‐Proline‐Catalyzed Michael Addition of Aldehydes and Unmodified Ketones to Nitro Olefins Accelerated by Et3N. Synthetic Communications, 37(1), 91-98. doi:10.1080/00397910600978218Ding, R., Katebzadeh, K., Roman, L., Bergquist, K.-E., & Lindström, U. M. (2006). Expanding the Scope of Lewis Acid Catalysis in Water:  Remarkable Ligand Acceleration of Aqueous Ytterbium Triflate Catalyzed Michael Addition Reactions. The Journal of Organic Chemistry, 71(1), 352-355. doi:10.1021/jo051540nPrimo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291Milner, S. E., Moody, T. S., & Maguire, A. R. (2012). Biocatalytic Approaches to the Henry (Nitroaldol) Reaction. European Journal of Organic Chemistry, 2012(16), 3059-3067. doi:10.1002/ejoc.201101840Ballini, R., & Palmieri, A. (2006). Synthetic Applications of Nitroalkanes Promoted by Solid Catalysis: Recent Results. Current Organic Chemistry, 10(17), 2145-2169. doi:10.2174/138527206778742632Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-02011 http://www.skb.se/upload/publications/pdf/TR-11-08Glorius, M., Markovits, M. A. C., & Breitkopf, C. (2018). Design of Specific Acid-Base-Properties in CeO2-ZrO2-Mixed Oxides via Templating and Au Modification. Catalysts, 8(9), 358. doi:10.3390/catal809035

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore