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Abstract—Silicon nitride (Si3N4) is an excellent material plat-
form for visible wavelength photonic integrated circuits, in
particular, as a host for the heterogeneous/hybrid integration
of complementary materials. In this work, we characterise the
performance of the Si3N4 from LIGENTEC as a base for hybrid
integration.

Index Terms—silicon nitride, photonic integrated circuit, visi-
ble, heterogeneous integration

I. INTRODUCTION

The phenomenal success and technological impact of sili-
con photonics, enhanced with III-V heterogenous integration,
is difficult to overstate. However, due to silicon’s narrow
bandgap, this success has so far been limited to primar-
ily infrared technologies. There are numerous visible light
applications which are ready to reap the same scalability,
efficiency, and stability improvements offered by photonic
integration, and require the development of wide-bandgap,
broadly transparent, material platforms with the potential for
heterogeneous integration [1].

This work was supported by the Royal Academy of Engineering (Research
Chairs and Senior Research Fellowships), Engineering and Physical Sciences
Research Council (EP/R03480X/1, EP/V004859/1) and Innovate UK (50414).
Author G. N. acknowledges funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 898074 (POTION).

Silicon nitride is a strong contendor as a base photonic inte-
grated circuit (PIC) platform at visible wavelengths. It features
low loss waveguiding [2], reasonable index contrast with silica
cladding layers, a wide bandgap, broad transparency range,
and a respectable third-order nonlinear refractive index [3].
Crucially, Si3N4 foundries are now offering multi-project
wafer (MPW) runs with core thicknesses which allow for
single-mode operation at visible wavelengths. Furthermore,
low-loss Si3N4 is an excellent platform for the hybrid or
heterogeneous integration with coupons or devices fabricated
separately in wide bandgap materials possessing high op-
tical nonlinearities, such as aluminium nitride or lithium
niobate [4]–[6]. In all, Si3N4 is a platform well-suited for
exploring applications which have traditionally been excluded
from the benefits of repeatable, high-performance photonic
integration.

In this work, we report a detailed characterisation of Si3N4

PICs sourced from the commercial foundry, LIGENTEC.
Propagation losses from 450 nm to 850 nm are measured, as
well as the performance of integrated ring resonators around
635 nm. We also characterize the performance of unbalanced
Mach-Zehnders, directional couplers, and the losses upon
transitioning from a fully clad waveguide to a thinly clad
waveguide. Local thinning of cladding regions is of critical
importance for successful vertical coupling to heterogeneously
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Fig. 1. A ring resonator on resonance and example transmission spectrum.

integrated components, as well as enabling applications such
as optical bio-sensing with integrated resonators. Micro-
transfer printing of suspended lithium niobite and gallium
nitride device coupons are also presented.

II. EXPERIMENTAL AND RESULTS

The Si3N4 chips measured were part of a MPW run with
core thickness of 150 nm. The top oxide cladding is 3.3 µm,
while the bottom is 4 µm. A simple lensed fibre injection
rig is used in conjunction with a number of fibre coupled
laser diodes to measure the propagation loss across the visible
spectrum. Propagation losses are < 1 dB/cm in TE and
< 0.5 dB/cm in TM at wavelengths above 630 nm. A
tuneable New Focus Velocity TLB-6704 is used to measure
the detailed spectral response of devices, such as high Q-factor
ring resonators, over a wavelength range of 635-638 nm as in
Fig. 1. Approximately 400 resonances were characterised for
a variety of coupling gap separations. A peak intrinsic quality
(Q) factor of 3.69× 106 is measured, while a mean value of
2.28× 106 is recorded over 10 resonances of a single device.
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Fig. 2. Power cross-coupling, κ, and distributed ring loss, α, extracted from
fits of resonance dips in ring transmission spectra.

Fig. 3. Schematic of hybrid integration of device coupons with foundry SiN
PIC.

The fabrication of MEMs-like suspended devices for
transfer-print integration with the Si3N4 involves in-house
direct write laser lithography and dry-etching in an ICP-RIE.
After membrane device isolation with an etch down to the
substrate, suspension is achieved with a wet etch targeting the
substrate. Micro-transfer printing with polymer micro-stamps
can then be used to pick and place suspended devices directly
onto the Si3N4 receiver chip with high precision, to target
vertically coupled devices as in Fig. 3.

III. CONCLUSION

We will present a detailed analysis of a foundry sourced
Si3N4 photonic integrated circuit platform for single mode
operation at visible wavelengths. Commercially available plat-
forms such as these will be critically important for the next
generation of photonic integration at wavelengths outside the
transparency windows of traditional foundry PICs like silicon
and indium phosphide. However, like those materials, hetero-
geneous integration will likely play an important role in the
development of Si3N4 PICs with enhanced functionality; and
so we present results towards the integration of gallium nitride
and lithium niobate components with the low-loss foundry
PICs.
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