106 research outputs found

    Differential Mueller matrix imaging of partially depolarizing optically anisotropic biological tissues

    Get PDF
    Since recently, a number of innovative polarization-based optical imaging modalities have been introduced and extensively used in various biomedical applications, with an ultimate aim to attain the practical tool for the optical biopsy and functional characterization of biological tissues. The techniques utilize polarization properties of light and Mueller matrix mapping of microscopic images of histological sections of biological tissues or polycrystalline films of biological fluids. The main drawback of currently developed laser polarimetry approaches and Mueller matrix mapping techniques is poor reproducibility of experimental data. This is due to azimuthal dependence of polarization and ellipticity values of most matrix elements to sample orientation in respect to incidence light polarization. Current study aims to generalize the methods of laser polarimetry for diagnosis of partially depolarizing optically anisotropic biological tissues. A method of differential Mueller matrix mapping for reconstruction of linear and circular birefringence and dichroism parameter distributions of partially depolarizing layers of biological tissues of different morphological structure is introduced and practically implemented. The coordinate distributions of the value of the first-order differential matrix elements of histological sections of brain tissue with spatially structured, optically anisotropic fibrillar network, as well as of parenchymatous tissue of the rectum wall with an “islet” polycrystalline structure are determined. Within the statistical analysis of polarization reproduced distributions of the averaged parameters of phase and amplitude anisotropy, the significant sensitivity of the statistical moments of the third and fourth orders to changes in the polycrystalline structure of partially depolarizing layers of biological tissue is observed. The differentiation of female reproductive sphere connective tissue is realized with excellent accuracy. The differential Mueller matrix mapping method for reconstruction of distributions of linear and circular birefringence and dichroism parameters of partially depolarizing layers of biological tissues of different morphological structures is proposed and substantiated. Differential diagnostics of changes in the phase (good balanced accuracy) and amplitude (excellent balanced accuracy) of the anisotropy of the partially depolarizing layers of the vagina wall tissue with prolapse of the genitals is realized. The maximum diagnostic efficiency of the first-order differential matrix method was demonstrated in comparison with the traditional methods of polarization and Mueller matrix mapping of histological sections of light-scattering biological tissues

    Differential Mueller matrix imaging of partially depolarizing optically anisotropic biological tissues

    Get PDF
    Since recently, a number of innovative polarization-based optical imaging modalities have been introduced and extensively used in various biomedical applications, with an ultimate aim to attain the practical tool for the optical biopsy and functional characterization of biological tissues. The techniques utilize polarization properties of light and Mueller matrix mapping of microscopic imagesof histological sectionsof biological tissues or polycrystalline films ofbiologicalfluids. The main drawback of currently developed laser polarimetry approaches and Mueller matrix mapping techniques is poor reproducibility of experi-mental data. This is due to azimuthal dependence of polarization and ellipticity values of most matrix elements to sample orientation in respect to incidence light polarization. Current study aims to generalize the methods of laser polarimetry for diagnosis of partially depolarizing optically anisotropic biological tissues. A method of differential Mueller matrix mapping for reconstruction of linear and circular birefringence and dichroism parameter distributions of partially depolarizing layers of biological tissues of different morphological structure is introduced and practically implemented. The coordinate distributions of the value of the first-order differential matrix elements of histological sections of brain tissue with spatially structured, optically anisotropic fibrillar network, as well as of parenchymatous tissue of the rectum wall with an “islet” polycrystalline structure are determined. Within the statistical analysis of polarization reproduced distributions of the averaged parameters of phase and amplitude anisotropy, the significant sensitivity of the statistical moments of the third and fourth orders to changes in the polycrystalline structure of partially depolarizing layers of biological tissue is observed. The differentiation of female reproductive sphere connective tissue is realized with excellent accuracy. The differential Mueller matrix mapping method for reconstruction of distributions of linear and circular birefringence and dichroism parameters of partially depolarizing layers of biological tissues of different morphological structures is proposed and substantiated. Differential diagnostics of changes in the phase (good balanced accuracy) and amplitude (excellent balanced accuracy) of the anisotropy of the partially depolarizing layers of the vagina wall tissue with prolapse of the genital sisrealized. The maximum diagnostic efficiency of the first-order differential matrix method was demonstrated in comparison with the traditional methods of polarization and Mueller matrix mapping of histological sections of light-scattering biological tissues

    Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium

    Get PDF
    Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need

    Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II–III diffuse gliomas

    Full text link
    The value of perfusion and diffusion-weighted MRI in differentiating histological subtypes according to the 2007 WHO glioma classification scheme (i.e. astrocytoma vs. oligodendroglioma) and genetic subtypes according to the 2016 WHO reclassification (e.g. 1p/19q co-deletion and IDH1 mutation status) in WHO grade II and III diffuse gliomas remains controversial. In the current study, we describe unique perfusion and diffusion MR signatures between histological and genetic glioma subtypes. Sixty-five patients with 2007 histological designations (astrocytomas and oligodendrogliomas), 1p/19q status (+ = intact/- = co-deleted), and IDH1 mutation status (MUT/WT) were included in this study. In all patients, median relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) were estimated within T2 hyperintense lesions. Bootstrap hypothesis testing was used to compare subpopulations of gliomas, separated by WHO grade and 2007 or 2016 glioma classification schemes. A multivariable logistic regression model was also used to differentiate between 1p19q+ and 1p19q- WHO II-III gliomas. Neither rCBV nor ADC differed significantly between histological subtypes of pure astrocytomas and pure oligodendrogliomas. ADC was significantly different between molecular subtypes (p = 0.0016), particularly between IDHWT and IDHMUT/1p19q+ (p = 0.0013). IDHMUT/1p19q+ grade III gliomas had higher median ADC; IDHWT grade III gliomas had higher rCBV with lower ADC; and IDHMUT/1p19q- had intermediate rCBV and ADC values, similar to their grade II counterparts. A multivariable logistic regression model was able to differentiate between IDHWT and IDHMUT WHO II and III gliomas with an AUC of 0.84 (p < 0.0001, 74% sensitivity, 79% specificity). Within IDHMUT WHO II-III gliomas, a separate multivariable logistic regression model was able to differentiate between 1p19q+ and 1p19q- WHO II-III gliomas with an AUC of 0.80 (p = 0.0015, 64% sensitivity, 82% specificity). ADC better differentiated between genetic subtypes of gliomas according to the 2016 WHO guidelines compared to the classification scheme outlined in the 2007 WHO guidelines based on histological features of the tissue. Results suggest a combination of rCBV, ADC, T2 hyperintense volume, and presence of contrast enhancement together may aid in non-invasively identifying genetic subtypes of diffuse gliomas

    DNA methylation-based classification of central nervous system tumours.

    Get PDF
    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology

    IR and Raman Investigation of Some Poly(acrylic) Acid Gels in Aqueous and Neutralized State

    No full text
    The modification of local polymeric conformation of poly(acrylic) acid (PAA), induced by hydration and neutralization with triethanol amine (TEA), was investigated by IR and Raman spectroscopy. The effect of water is the perturbation of hydrogen bonds established between different polymeric chains and the modification of the local conformation of the polymer. The neutralization with TEA affects the carboxylic groups and modifies the local conformation of the polymer. These modifications are correlated with the shift and the modification of the characteristics of IR and Raman spectra
    corecore