68 research outputs found
augustin
Green tea catechins (GTC) have been shown to inhibit the activities of enzymes involved in folate uptake. Hence, regular green tea drinkers may be at risk of impaired folate status. The present experiments aimed at studying the impact of dietary GTC on folate concentrations and metabolism. In a human pilot study (parallel design) healthy men consumed for 3 weeks 6 capsules (~670 mg GTC) per day (2 capsules with each principal meal) containing aqueous extracts of the leaves of Camellia sinensis (n=17) or placebo (n=16). No differences in plasma folate concentrations were observed between treatments. We further fed groups of 10 male rats diets fortified with 0, 0.05, 0.5, 1, or 5 g GTC/kg for 6 weeks. Only at the highest intake, GTC significantly decreased serum 5-methyl-tetrahydrofolate concentrations in rats, while mRNA concentrations of reduced folate carrier, proton-coupled folate transporter/heme carrier protein 1, and dihydrofolate reductase (DHFR) remained unchanged in intestinal mucosa. Using an in vitro enzyme activity assay, we observed a time-and dose-dependent inhibition of DHFR activity by epigallocatechin gallate and a green tea extract. Our data suggest that regular green tea consumption is unlikely to impair folate status in healthy males, despite the DHFR inhibitory activity of GTC. K e y w o r d s : folates, catechins, bioavailability, human, rat MATERIAL AND METHODS Dihydrofolate reductase activity The inhibition of human dihydrofolate reductase (DHFR) activity by (-) epigallocatechin gallate (EGCG) and a standardized green tea extract (Polyphenon 60 (P60); Sigma Chemical Co., St Louis, MO, USA) was measured using a commercial dihydrofolate reductase assay kit (Sigma-Aldrich) according to the manufacturer's protocol. Methotrexate, a well-known competitive DHFR inhibitor was used as a positive control. EGCG and P60 were dissolved in ultra pure-water (containing 1% ascorbic acid (w/v) (Merck KGaA, Darmstadt, Germany) to stabilize the catechins) on the day of the experiments. DHFR was used at a final activity of 1.5 x 10 -3 units per reaction. Final concentrations of EGCG and methotrexate were 1000, 100 and 10 nmol/L per reaction. P60 was used at final concentrations of 1428 .57, 142.86, and 14.29 µg/L and, thus, contained 1060 , 106, and 10.6 nmol/L EGCG and 1427.3 nmol/L of the gallated catechins (EGCG, ECG and gallocatechin gallate), respectively. Rat study Fifty male Wistar rats (Harlan Winkelmann GmbH, Borchen, Germany) with an initial body weight of 99.8 ± 2.0 g (mean ± SEM) were randomized into 5 groups of 10 animals each and housed pair-wise with sawdust bedding under controlled environmental conditions (23 ± 2°C and 65 ± 5% relative humidity, 12 h dark-light cycle). The rats were kept for 5 days on a folate-adjusted rat diet for growing animals containing 2 mg of folic acid/kg (C1027; Altromin GmbH, Lage, Germany) and thereafter received their respective experimental diets consisting of the standard diet supplemented with 0, 0.05, 0.5, 1, or 5 g green tea catechins per kg diet using P60 as the source of catechins (see The animal experiment was conducted in accordance with the German Guidelines and Regulations on Animal Care (Deutsches Tierschutzgesetz, 2006) and was approved by the University of Kiel Ethics Committee on Animal Care. Human pilot study Healthy males were recruited by advertisement at the University and local community of Reading (United Kingdom) and amongst volunteers who previously participated in nutritional trials at the Hugh Sinclair Human Nutrition Unit. Inclusion criteria were: male gender, 18-55 y of age, and a BMI in the range of 22-32 kg/m 2 . Subjects were excluded from the trial if they were diagnosed with any illness or on long-term medication, used dietary supplements, participated in >5 h of aerobic exercise activity per week, or were involved in a clinical trial within 3 months prior to the study. The study protocol was approved by the University of Reading ethics committee and all subjects gave written informed consent before participation. A standardized aqueous green tea extract prepared from the leaves of Camellia sinensis L. (a kind gift of Cognis Deutschland GmbH & Co KG, Monheim am Rhein, Germany) was used to make the green tea extract (GTE) capsules. The composition of the GTE is given in The trial was designed as a double-blind placebo-controlled parallel study. Thirty-one volunteers were randomly assigned to one of two treatment groups (GTE, n=16 or placebo, n=15) with similar BMI and age (data not shown). Subjects took 6 capsules per day, two with each principal meal, for 3 weeks and were instructed to limit their daily tea and coffee consumption to ≤ 3 cups, but to otherwise maintain their normal diet and exercise patterns. Compliance was determined by counting of the returned capsules at the end of the trial and was high (>98%). Blood samples (20 ml) were drawn into tubes containing 0.05 mL 15% K 3 EDTA (Vacutainer; Becton Dickinson UK Ltd., Oxford, UK) after an overnight fast on the first and last day of the intervention period. Plasma was immediately obtained by centrifugation (1,000 x g, 10 min) and 3 ml aliquots were stored at -80°C until analysis. Folate quantification by HPLC Procedures for extraction and purification of folates from human plasma and rat serum and liver samples by strong anion exchange solid-phase extraction were described previously by Witthoft et al. (18). Dialysed rat serum (500 µl/g) was used to ensure complete deconjugation of folate polyglutamates in liver samples; modified from Patring et al. (19). Analyses were performed using an HPLC system (Agilent 1100) consisting of a 104 10-formyltetrahydrofolate (10-HCO-H 4 folate), and 5,10-methenyltetrahydrofolate (5,10-CH + -H 4 folate) (a gift of Merck Eprova AG, Schaffhausen, Switzerland, except 10-HCO-H 4 folate, which was purchased from Schircks Laboratories, Jona, Switzerland). Quantification was based on a multilevel (n=7) external calibration curve with a linear range over 1.2-118.0 ng/mL for H 4 folate, 0.6-93.1 ng/mL for 5-CH 3 -H 4 folate, 0.9-184.1 ng/mL for 10-HCO-H 4 folate and 9.3-184.5 ng/mL for 5,10-CH + -H 4 folate. mRNA quantification RNA was isolated from rat duodenal mucosa using the RNeasy Lipid Tissue Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer's protocol. DNA digestion was performed with RNase-Free DNase Set (Qiagen). RNA integrity was checked by electrophoresis on a denaturing agarose gel and ethidium bromide staining. The concentration and purity of isolated RNA was determined by measuring the absorbance (AB) at 260 and 280 nm in a spectrophotometer (DU800, Beckmann Instruments; Munich, Germany). A ratio of >1.8 between AB 260nm and AB 280nm was considered as acceptable. RNA aliquots were stored at -80°C until analysis. Primer pairs of β-actin, reduced folate carrier (RFC) and proton-coupled folate transporter/heme carrier protein-1 (PCFT/HCP1) were designed to the corresponding sequences of Rattus norvegicus mRNA with Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/ primer3_www.cgi; 03.05.2007) and purchased from MWGBiotech AG (Ebersberg, Germany). The sequences of primers used in this study were as follows: Sense primer for β-actin, 5´-GGGGTGTTGAAGGTCTCAAA-3´, antisense primer for β-actin, 5´-TGTCACCAACTGGGACGATA-3´; sense primer for RFC, 5´-GGCTCGTGTTCTACCTCTGC-3´, antisense primer for RFC, 5´-GGTAGTCGGTGAGCAGGAAG-3´; sense primer for PCFT/HCP1, 5´-TGAGCTAAGCACACCCCTCT-3´, antisense primer for PCFT/HCP1, 5´-TCCGTACCCTGTGAACATGA-3´. The product size was 90 base pair (bp) for β-actin; 183 bp for RFC and 217 bp for PCFT/HCP1. QuantiTect ® Primer Assay (Qiagen) was used for DHFR mRNA amplification, with a product size of 88 bp. For one-step quantitative reverse transcriptase polymerase chain reaction (one-step qRT-PCR) two aliquots of RNA were amplified. External relative standard curves of total RNA were determined with each run. Data was normalized by dividing the concentrations of RFC, PCFT/HCP1 or DHFR by the concentrations of β-actin mRNA. Each PCR reaction (final volume 20 µl) contained 0.5 µmol/L of each primer, 10 µl of 2x QuantiTect ® SYBR ® Green RT-PCR Master Mix (Qiagen), 0.2 µl QuantiTect RT-Mix (Qiagen), 8 µl of RNA dilution and 1.4 µl water. Real-time cycler conditions were set according to the manufacturers protocol to 40 cycles with annealing temperatures of 56°C for β-actin, 59°C for RFC, 56°C for PCFT/HCP1 and 55°C for DHFR, respectively. Quantification and melting curves of the amplified products were analysed using the RotorGene 6.0 software (Corbett Lifescience; Sydney, Australia). Melting curve analyses and agarose gel electrophoresis with ethidium bromide staining were performed to exclude non-specific products. Statistical analyses Statistical calculations were performed with GraphPad Prism 4 software (GraphPad Software Inc., San Diego, CA, USA). Analyses of the data from the rat study and the in vitro assay were performed by means of a one-way ANOVA followed by Dunnetts test for multiple comparisons of group means between animals receiving GTC or control diet. Analyses of the data from the human pilot study were performed by means of a paired Student's t-test for comparison of baseline vs. treatment and by means of an unpaired Student's t-test for comparisons between subjects receiving GTE or placebo. Reported values are means ± SEM and effects were considered significant at P<0.05. RESULTS Dihydrofolate reductase activity in vitro Both pure EGCG and P60, at concentrations of 1000 for EGCG and 1060 nmol/L for EGCG from P60, respectively, time-dependently inhibited DHFR activity Serum and liver folate concentrations in rats Feed consumption and final body mass (318.7 ± 4.8 g) of the Wistar rats were similar in all groups. Intake of diets containing 0.5% GTC over a period of 42 days significantly decreased the serum concentration of 5-CH 3 -H 4 folate compared to control rats, whereas the concentrations of H 4 folate remained unchanged ( Relative mRNA levels of reduced folate carrier and dihydrofolate reductase in rat duodenal mucosa The housekeeping gene β-actin was expressed at similar levels in all animals and no significant differences in the relative mRNA levels of RFC, PCFT/HCP1 or DHFR in the duodenal mucosa were observed Plasma folate concentrations in humans Consumption of 670 mg of GTC per day or placebo did not affect plasma folate concentrations in healthy male volunteers. No significant differences in plasma concentrations of 5-CH 3 -H 4 folate were observed between the treatment groups at baseline (placebo, 16.3 ± 2.6 nmol/L; GTE, 19.1 ± 2.4 nmol/L) or after intervention (placebo, 15.5 ± 2.1 nmol/L; GTE, 17.6 ± 2.4 nmol/L). DISCUSSION Green tea is a widely consumed beverage in many countries and contains appreciable amounts of polyphenols. Catechins (flavanols) are the major subclass of bioactive compounds within the polyphenol fraction of green tea. Epidemiological studies associated a high dietary intake of catechins with a reduced risk to suffer from a variety of diseases (reviewed in 20), including certain forms of cancer (21). The underlying molecular and cellular mechanisms by which green tea catechins may mediate anticarcinogenic acitivty seem to be diverse: Cell culture experiments as well as studies in rodents indicate that green tea catechin may inhibit angiogenesis via a down-regulation of vascular endothelial growth factor (reviewed in 22). Furthermore it has been suggested that the anticancer activity of green tea catechins against different kind of cancers may find an explanation in direct targeting of lipid rafts (23). Recent in vitro studies have shown that epigallocatechin gallate (EGCG), the predominant catechin in green tea, competitively inhibits the enzyme dihydrofolate reductase (DHFR) (9, 13). DHFR inhibition is the mechanism by which so-called antifolates, such as the cytostatic drug methotrexate, inhibit cell division and reduce tumor growth (15, 24). Co-administration of folic acid and the DHFR inhibitors methotrexate and pyrimethamine, respectively, reduced plasma folate concentrations in rats The commercial green tea extract Polyphenon 60 (P60) used in the rat study and its principle bioactive ingredient EGCG inhibited DHRF activity time-and concentration-dependently in vitro In order to study whether or not the effects observed in vitro bear a meaning for the more complex physiological processes in vivo, Wistar rats were fed for 42 days with diets fortified with increasing concentrations of green tea catechins (GTC) using a standardized green tea extract (P60). The diets contained 2 mg folic acid per kg, which is equivalent to twice the dietary recommendations for laboratory rats as given by the National Research Council (28). It is noteworthy that folates synthesized by the microflora of the large intestine are absorbed and may significantly contribute to blood folate concentrations (reviewed in 29). The diet used in this study was therefore formulated to provide a minimum of substrate to the intestinal microflora to limit bacterial folate synthesis. Only in those animals fed the highest concentrations of the green tea extract (0.5% GTC), did we observe a significant decrease in serum 5-CH 3 -H 4 folate concentrations as compared to the control group ( At a given substrate affinity and substrate concentration, the capacity of enzymatic turnover of folates as well as the amount of their carrier-mediated transport across cellular membranes is mainly affected by the amount of enzymes/carriers present at the tissue level. Because catechins are known to alter the gene expression for a variety of proteins (35), we quantified relative mRNA concentrations of the RFC, PCFT/HCP1, and DHFR in the duodenal mucosa of rats fed GTC. No significant differences in mRNA concentrations of RFC, PCFT/HCP1, and of DHFR were found between the experimental groups The current findings suggested that GTC might decrease serum folate concentrations only if supplied at supra-nutritional doses. A 70 kg human would have to drink almost 100 cups of green tea infusion per day to match the highest dose fed to rats in the present study. Because such a human study would be unfeasible as well as unrealistic, we designed a pilot study with a standardized green tea extract to assess whether or not regular consumption of high doses of GTC might affect plasma folate concentrations in humans. The intake of 670 mg of GTC per day, which corresponds to about 20 cups of green tea, caused no significant differences in plasma concentrations of 5-CH 3 -H 4 folate between the treatment and placebo groups, both of which consuming a normal diet containing on average ~328 ± 26 µg folate/d. Insufficient dietary intake of folates for as short as 2-3 weeks has been reported to result in reduced blood concentrations of the vitamin (30). Our findings therefore suggest that green tea drinking is unlikely to affect plasma folate concentrations in healthy, free-living subjects and that a longer treatment period and/or even higher doses of dietary GTC may be necessary to induce changes in folate concentrations, if possible at all. Further human studies with GTC and a standardized supply of folic acid (in the absence of naturally occurring reduced folates) are warranted to investigate the influence of GTC on DHFR activity in vivo. In addition, the measurement of (oxidized) serum folic acid should be considered because folic acid has been found in serum of subjects consuming folic acid-fortified foods for 5 d (11). Based on the experiments presented here, it appears unlikely that daily green tea consumption, even at high levels, may affect folate concentrations in healthy humans. Acknowledgement
Mast cell glycosaminoglycans
Mast cells contain granules packed with a mixture of proteins that are released on degranulation. The proteoglycan serglycin carries an array of glycosaminoglycan (GAG) side chains, sometimes heparin, sometimes chondroitin or dermatan sulphate. Tight packing of granule proteins is dependent on the presence of serglycin carrying these GAGs. The GAGs of mast cells were most intensively studied in the 1970s and 1980s, and though something is known about the fine structure of chondroitin sulphate and dermatan sulphate in mast cells, little is understood about the composition of the heparin/heparan sulphate chains. Recent emphasis on the analysis of mast cell heparin from different species and tissues, arising from the use of this GAG in medicine, lead to the question of whether variations within heparin structures between mast cell populations are as significant as variations in the mix of chondroitins and heparins
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
Differential White Blood Cell Count and Type 2 Diabetes: Systematic Review and Meta-Analysis of Cross-Sectional and Prospective Studies
Objective: Biological evidence suggests that inflammation might induce type 2 diabetes (T2D), and epidemiological studies have shown an association between higher white blood cell count (WBC) and T2D. However, the association has not been systematically investigated.Research Design and Methods: Studies were identified through computer-based and manual searches. Previously unreported studies were sought through correspondence. 20 studies were identified (8,647 T2D cases and 85,040 non-cases). Estimates of the association of WBC with T2D were combined using random effects meta-analysis; sources of heterogeneity as well as presence of publication bias were explored.Results: The combined relative risk (RR) comparing the top to bottom tertile of the WBC count was 1.61 (95% CI: 1.45; 1.79, p = 1.5*10(-18)). Substantial heterogeneity was present (I-2 = 83%). For granulocytes the RR was 1.38 (95% CI: 1.17; 1.64, p = 1.5*10(-4)), for lymphocytes 1.26 (95% CI: 1.02; 1.56, p = 0.029), and for monocytes 0.93 (95% CI: 0.68; 1.28, p = 0.67) comparing top to bottom tertile. In cross-sectional studies, RR was 1.74 (95% CI: 1.49; 2.02, p = 7.7*10(-13)), while in cohort studies it was 1.48 (95% CI: 1.22; 1.79, p = 7.7*10(-5)). We assessed the impact of confounding in EPIC-Norfolk study and found that the age and sex adjusted HR of 2.19 (95% CI: 1.74; 2.75) was attenuated to 1.82 (95% CI: 1.45; 2.29) after further accounting for smoking, T2D family history, physical activity, education, BMI and waist circumference.Conclusions: A raised WBC is associated with higher risk of T2D. The presence of publication bias and failure to control for all potential confounders in all studies means the observed association is likely an overestimate
On the use of bootstrap in factor analysis
Within several research fields (sociology, economics, demography and health), it is
likely to deal with hierarchical structure phenomenon, with multi-level data: individual,
familiar, territorial and social. In such circumstances it is necessary to proceed
with the analysis of the relation between individuals and the society, where naturally,
can be observed at different hierarchical levels, and variables may be defined
at each level. This leads to research into the interaction between variables characterizing
individuals and variables characterizing groups. The measurement of this
interaction has been defined \u201cmoderating effect\u201d.
This has been carried out by considering a non-parametric regression analysis
(Giordano and Aria, 2010), that is based on a generalization of Classification and
Regression Trees algorithm (Breiman et al., 1984) that takes into account the different
role played by variables belonging to higher levels.
This paper points out how ensemble procedure in a regression tree methodology
can be implemented that considers the relationships among variables belonging to
different levels of a data matrix which is characterized by a hierarchical structure
- …