34 research outputs found

    Distributional Borel Summability for Vacuum Polarization by an External Electric Field

    Full text link
    It is proved that the divergent perturbation expansion for the vacuum polarization by an external constant electric field in the pair production sector is Borel summable in the distributional sense.Comment: 14 page

    Irreducible Hamiltonian BRST approach to topologically coupled abelian forms

    Get PDF
    An irreducible Hamiltonian BRST approach to topologically coupled p- and (p+1)-forms is developed. The irreducible setting is enforced by means of constructing an irreducible Hamiltonian first-class model that is equivalent from the BRST point of view to the original redundant theory. The irreducible path integral can be brought to a manifestly Lorentz covariant form.Comment: 29 pages, LaTeX 2.0

    A Note on "Irreducible" p-Form Gauge Theories with Stueckelberg Coupling

    Get PDF
    p-form gauge theories with Stueckelberg coupling are quantized in an irreducible antifield-BRST way. As a consequence, neither the ghosts of ghosts nor their antifields appear. Some irreducible gauge conditions are inferred naturally within our formalism. In the end we briefly discuss the interacting case.Comment: 10 pag, latex 2.09, no figure

    Second Order Gauge Theory

    Full text link
    A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G=F+fAFG=\partial F+fAF arises besides the one of the first order treatment, F=AA+fAAF=\partial A-\partial A+fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is LPG2L_{P}\propto G^{2}. In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian.Comment: 27 pages. No figure. Final versio

    Topological Sectors and Gauge invariance in massive Vector-Tensor Theories in D >=4

    Get PDF
    A family of locally equivalent models is considered. They can be taken as a generalization to d+1d+1 dimensions of the Topological Massive and ``Self-dual'' models in 2+1 dimensions. The corresponding 3+1 models are analized in detail. It is shown that one model can be seen as a gauge fixed version of the other, and their space of classical solutions differs in a topological sector represented by the classical solutions of a pure BF model. The topological sector can be gauged out on cohomologically trivial base manifolds but on general settings it may be responsible of the difference in the long distance behaviour of the models. The presence of this topological sector appears explicitly in the partition function of the theories. The generalization of this models to higher dimensions is shown to be straightfoward.Comment: 15 pages in LaTeX. This is a revised version. The BRST invariant covariant effective action and partition function for the 3+1 BF theory are explicity calculated, static solutions for special sources of the Proca and TM model are included and compared, some references adde

    Irreducible Hamiltonian BRST analysis of Stueckelberg coupled p-form gauge theories

    Get PDF
    The irreducible Hamiltonian BRST symmetry for p-form gauge theories with Stueckelberg coupling is derived. The cornerstone of our approach is represented by the construction of an irreducible theory that is equivalent from the point of view of the BRST formalism with the original system. The equivalence makes permissible the substitution of the BRST quantization of the reducible model by that of the irreducible theory. Our procedure maintains the Lorentz covariance of the irreducible path integral.Comment: 29 pages, LaTeX 2.0

    Schroedingers equation with gauge coupling derived from a continuity equation

    Full text link
    We consider a statistical ensemble of particles of mass m, which can be described by a probability density \rho and a probability current \vec{j} of the form \rho \nabla S/m. The continuity equation for \rho and \vec{j} implies a first differential equation for the basic variables \rho and S. We further assume that this system may be described by a linear differential equation for a complex state variable \chi. Using this assumptions and the simplest possible Ansatz \chi(\rho,S) Schroedingers equation for a particle of mass m in an external potential V(q,t) is deduced. All calculations are performed for a single spatial dimension (variable q) Using a second Ansatz \chi(\rho,S,q,t) which allows for an explict q,t-dependence of \chi, one obtains a generalized Schroedinger equation with an unusual external influence described by a time-dependent Planck constant. All other modifications of Schroeodingers equation obtained within this Ansatz may be eliminated by means of a gauge transformation. Thus, this second Ansatz may be considered as a generalized gauging procedure. Finally, making a third Ansatz, which allows for an non-unique external q,t-dependence of \chi, one obtains Schroedingers equation with electromagnetic potentials \vec{A}, \phi in the familiar gauge coupling form. A possible source of the non-uniqueness is pointed out.Comment: 25 pages, no figure

    Three form potential in (special) minimal supergravity superspace and supermembrane supercurrent

    Full text link
    This contribution begins the study of the complete superfield Lagrangian description of the interacting system of D=4 N=1 supergravity (SUGRA) and supermembrane. Firstly, we review a 'three form supergravity' by Ovrut and Waldram, which we prefer to call 'special minimal supergravity'. This off-shell formulation of simple SUGRA is appropriate for our purposes as the supermembrane action contains the so-called Wess-Zumino term given by the integral over a three form potential in superspace, C3. We describe this formulation in the frame of Wess--Zumino superfield approach, showing how the basic variations of minimal SUGRA are restricted by the conditions of the existence of a three-form potential C3 in its superspace. In this language the effect of dynamical generation of cosmological constant, known to be characteristic for this formulation of SUGRA, appears in its superfield form, first described by Ogievetsky and Sokatchev in their formulation of SUGRA as a theory of axial vector superfield. Secondly, we vary the supermembrane action with respect to the special minimal SUGRA superfields (basic variations) and obtain the supercurrent superfields as well as the supergravity superfield equations with the supermembrane contributions.Comment: 18 pages, no figures. V2: Important references added. The abstract and presentation have been changed to reflect the overloop with that. Submitted to the QTS7 Proceedings. J. Phys. style use

    Duality and Global Symmetries

    Get PDF
    This is a general introduction to duality in field theories. The existence and breaking of global symmetries is used as a guideline to systematically prove duality between different field theories. Systems discussed include abelian and non-abelian T-duality in string theory, abelian and nonabelian bosonization, and duality for massless and massive antisymmetric tensor field theories in arbitrary number of dimensions. Open questions regarding these techniques are also discussed. (Lectures given at 33rd Karpacz Winter School `Duality: Strings and Fields' .)Comment: 19 pages,latex,espcrc

    Supergravity couplings: a geometric formulation

    Get PDF
    This report provides a pedagogical introduction to the description of the general Poincare supergravity/matter/Yang-Mills couplings using methods of Kahler superspace geometry. At a more advanced level this approach is generalized to include tensor field and Chern-Simons couplings in supersymmetry and supergravity, relevant in the context of weakly and strongly coupled string theories.Comment: 266 pages, to be published in Phys. Rep.
    corecore