23 research outputs found

    Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity

    Get PDF
    Extinction rates are predicted to rise exponentially under climate warming, but many of these predictions ignore physiological and behavioral plasticity that might buffer species from extinction. We evaluated the potential for physiological acclimatization and behavioral avoidance of poor climatic conditions to lower extinction risk under climate change in the global hotspot of salamander diversity, a region currently predicted to lose most of the salamander habitat due to warming. Our approach integrated experimental physiology and behavior into a mechanistic species distribution model to predict extinction risk based on an individual’s capacity to maintain energy balance with and without plasticity. We assessed the sensitivity of extinction risk to body size, behavioral strategies, limitations on energy intake, and physiological acclimatization of water loss and metabolic rate. The field and laboratory experiments indicated that salamanders readily acclimatize water loss rates and metabolic rates in ways that could maintain positive energy balance. Projections with plasticity reduced extinction risk by 72% under climate warming, especially in the core of their range. Further analyses revealed that juveniles might experience the greatest physiological stress under climate warming, but we identified specific physiological adaptations or plastic responses that could minimize the lethal physiological stress imposed on juveniles. We conclude that incorporating plasticity fundamentally alters ecological predictions under climate change by reducing extinction risk in the hotspot of salamander diversity

    Enhancer evolution across 20 mammalian species.

    Get PDF
    The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.We thank Stephen Watt, Frances Connor, the CRUK-CI Genomics and Bioinformatics cores, Biological Resources Unit (Matthew Clayton), Margaret Brown (West Yorkshire bat hospital), Julie E. Horvath (North Carolina Central University), and Chris Dillingham (University of Cardiff) for technical assistance; Matthieu Muffato for assistance with whole-genome alignments; Claudia Kutter, Gordon Brown, Christine Feig, and Christina Ernst for useful comments and discussions, and the EBI systems team for management of computational resources. This research was supported by Cancer Research UK (D.V., D.T.O.), the European Molecular Biology Laboratory (C.B., P.F.), the Wellcome Trust (WT095908) (P.F.) and (WT098051) (P.F., D.T.O.), the European Research Council, EMBO Young Investigator Programme (D.T.O.), the National Science Foundation (0744979) (T.J.P.), NIH (P40 OD010965, R01 OD010980, R37 MH060233) (A.J.J.) and MRC (U117588498) (J.M.A.T.). Cetacean samples were collected by the UK Cetacean Strandings Investigation Programme, funded by Defra and the Governments of Scotland and Wales.This is the final version. It originally appeared at http://www.sciencedirect.com/science/article/pii/S0092867415000070

    Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays.

    Get PDF
    Rapid advancements made in technology, and the drive towards miniaturisation, means that we require reliable, sustainable and cost effective methods of manufacturing a wide range of nanomaterials. In this bioinspired study, we take advantage of millions of years of evolution, and adapt a biomineralisation protein for surface patterning of biotemplated magnetic nanoparticles (MNPs). We employ soft-lithographic micro-contact printing to pattern a recombinant version of the biomineralisation protein Mms6 (derived from the magnetotactic bacterium Magnetospirillum magneticum AMB-1). The Mms6 attaches to gold surfaces via a cysteine residue introduced into the N-terminal region. The surface bound protein biotemplates highly uniform MNPs of magnetite onto patterned surfaces during an aqueous mineralisation reaction (with a mean diameter of 90 ± 15 nm). The simple addition of 6% cobalt to the mineralisation reaction maintains the uniformity in grain size (with a mean diameter of 84 ± 14 nm), and results in the production of MNPs with a much higher coercivity (increased from ≈156 Oe to ≈377 Oe). Biotemplating magnetic nanoparticles on patterned surfaces could form a novel, environmentally friendly route for the production of bit-patterned media, potentially the next generation of ultra-high density magnetic data storage devices. This is a simple method to fine-tune the magnetic hardness of the surface biotemplated MNPs, and could easily be adapted to biotemplate a wide range of different nanomaterials on surfaces to create a range of biologically templated devices

    Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.

    Get PDF
    We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development

    Data from: Physical calculations of resistance to water loss improve predictions of species range models

    No full text
    Species ranges are constrained by the physiological tolerances of organisms to climatic conditions. By incorporating physiological constraints, species distribution models can identify how biotic and abiotic factors constrain a species\u27 geographic range. Rates of water loss influence species distributions, but characterizing water loss for an individual requires complex calculations. Skin resistance to water loss (ri) is considered to be the most informative metric of water loss rates because it controls for experimental biases. However, calculating ri requires biophysical equations to solve for the resistance of the air that surrounds an organism, termed the boundary layer resistance (rb). Here, we compared theoretical and empirical methods for measuring skin resistance to water loss of a Plethodon salamander collected from nature. For the empirical methods, we measured rb of agar replicas at five body sizes, two temperatures, three vapor pressure deficits, and six flow rates using a flow through system. We also calculated rb using biophysical equations under the same experimental conditions. We then determined the ecological implications of incorporating skin and boundary layer resistance into a species range model that estimated potential activity time and energy balance throughout the geographic range of the study species. We found that empirical methods for calculating rb resulted in negative values of ri, whereas biophysical calculations produced meaningful values of ri. The species range model determined that ignoring realistic boundary layer and skin resistances reduced average estimates of energy balance by as much as 64% and potential activity time by 88% throughout the spatial extent of the model. We conclude that the use of agar replicas is an inadequate technique to characterize skin resistance to water loss, and incorporating boundary layer and skin resistances to water loss improve estimates of activity and energetics for mechanistic species distribution models. More importantly, our study suggests incorporating the physical processes underlying rates of water loss could improve estimates of habitat suitability for many animals

    Enhancer evolution across 20 mammalian species

    Get PDF
    The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution
    corecore