28 research outputs found

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure

    Get PDF
    Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case–control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case–control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses

    Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples

    Get PDF
    Objective: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). Results: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=−0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. Conclusions: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis

    Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets

    Get PDF
    Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from −0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Developmental Differences in Probabilistic Reversal Learning: A Computational Modeling Approach

    No full text
    Cognitive flexibility helps us to navigate through our ever-changing environment and has often been examined by reversal learning paradigms. Performance in reversal learning can be modeled using computational modeling which allows for the specification of biologically plausible models to infer psychological mechanisms. Although such models are increasingly used in cognitive neuroscience, developmental approaches are still scarce. Additionally, though most reversal learning paradigms have a comparable design regarding timing and feedback contingencies, the type of feedback differs substantially between studies. The present study used hierarchical Gaussian filter modeling to investigate cognitive flexibility in reversal learning in children and adolescents and the effect of various feedback types. The results demonstrate that children make more overall errors and regressive errors (when a previously learned response rule is chosen instead of the new correct response after the initial shift to the new correct target), but less perseverative errors (when a previously learned response set continues to be used despite a reversal) adolescents. Analyses of the extracted model parameters of the winning model revealed that children seem to use new and conflicting information less readily than adolescents to update their stimulus-reward associations. Furthermore, more subclinical rigidity in everyday life (parent-ratings) is related to less explorative choice behavior during the probabilistic reversal learning task. Taken together, this study provides first-time data on the development of the underlying processes of cognitive flexibility using computational modeling

    The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis.

    No full text
    The right temporoparietal junction (rTPJ) is frequently associated with different capacities that to shift attention to unexpected stimuli (reorienting of attention) and to understand others' (false) mental state [theory of mind (ToM), typically represented by false belief tasks]. Competing hypotheses either suggest the rTPJ representing a unitary region involved in separate cognitive functions or consisting of subregions subserving distinct processes. We conducted activation likelihood estimation (ALE) meta-analyses to test these hypotheses. A conjunction analysis across ALE meta-analyses delineating regions consistently recruited by reorienting of attention and false belief studies revealed the anterior rTPJ, suggesting an overarching role of this specific region. Moreover, the anatomical difference analysis unravelled the posterior rTPJ as higher converging in false belief compared with reorienting of attention tasks. This supports the concept of an exclusive role of the posterior rTPJ in the social domain. These results were complemented by meta-analytic connectivity mapping (MACM) and resting-state functional connectivity (RSFC) analysis to investigate whole-brain connectivity patterns in task-constrained and task-free brain states. This allowed for detailing the functional separation of the anterior and posterior rTPJ. The combination of MACM and RSFC mapping showed that the posterior rTPJ has connectivity patterns with typical ToM regions, whereas the anterior part of rTPJ co-activates with the attentional network. Taken together, our data suggest that rTPJ contains two functionally fractionated subregions: while posterior rTPJ seems exclusively involved in the social domain, anterior rTPJ is involved in both, attention and ToM, conceivably indicating an attentional shifting role of this region

    Look into my eyes: Investigating joint attention using interactive eye-tracking and fMRI in a developmental sample

    No full text
    Joint attention, the shared attentional focus of at least two people on a third significant object, is one of the earliest steps in social development and an essential aspect of reciprocal interaction. However, the neural basis of joint attention (JA) in the course of development is completely unknown. The present study made use of an interactive eye-tracking paradigm in order to examine the developmental trajectories of JA and the influence of a familiar interaction partner during the social encounter. Our results show that across children and adolescents JA elicits a similar network of “social brain” areas as well as attention and motor control associated areas as in adults. While other-initiated JA particularly recruited visual, attention and social processing areas, self-initiated JA specifically activated areas related to social cognition, decision-making, emotions and motivational/reward processes highlighting the rewarding character of self-initiated JA. Activation was further enhanced during self-initiated JA with a familiar interaction partner. With respect to developmental effects, activation of the precuneus declined from childhood to adolescence and additionally shifted from a general involvement in JA towards a more specific involvement for self-initiated JA. Similarly, the temporoparietal junction (TPJ) was broadly involved in JA in children and more specialized for self-initiated JA in adolescents. Taken together, this study provides first-time data on the developmental trajectories of JA and the effect of a familiar interaction partner incorporating the interactive character of JA, its reciprocity and motivational aspects

    Young adolescents with autism show abnormal joint attention network: A gaze contingent fMRI study

    Get PDF
    Behavioral research has revealed deficits in the development of joint attention (JA) as one of the earliest signs of autism. While the neural basis of JA has been studied predominantly in adults, we recently demonstrated a protracted development of the brain networks supporting JA in typically developing children and adolescents. The present eye-tracking/fMRI study now extends these findings to adolescents with autism. Our results show that in adolescents with autism JA is subserved by abnormal activation patterns in brain areas related to social cognition abnormalities which are at the core of ASD including the STS and TPJ, despite behavioral maturation with no behavioral differences. Furthermore, in the autism group we observed increased neural activity in a network of social and emotional processing areas during interactions with their mother. Moreover, data indicated that less severely affected individuals with autism showed higher frontal activation associated with self-initiated interactions. Taken together, this study provides first-time data of JA in children/adolescents with autism incorporating the interactive character of JA, its reciprocity and motivational aspects. The observed functional differences in adolescents ASD suggest that persistent developmental differences in the neural processes underlying JA contribute to social interaction difficulties in ASD. (C) 2017 The Authors. Published by Elsevier Inc
    corecore