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Behavioral research has revealed deficits in the development of joint attention (JA) as one of the earliest signs of
autism. While the neural basis of JA has been studied predominantly in adults, we recently demonstrated a
protracted development of the brain networks supporting JA in typically developing children and adolescents.
The present eye-tracking/fMRI study now extends these findings to adolescents with autism. Our results show
that in adolescents with autism JA is subserved by abnormal activation patterns in brain areas related to social
cognition abnormalities which are at the core of ASD including the STS and TPJ, despite behavioral maturation
with no behavioral differences. Furthermore, in the autism group we observed increased neural activity in a net-
work of social and emotional processing areas during interactions with their mother. Moreover, data indicated
that less severely affected individuals with autism showed higher frontal activation associatedwith self-initiated
interactions. Taken together, this study provides first-time data of JA in children/adolescents with autism incor-
porating the interactive character of JA, its reciprocity and motivational aspects. The observed functional differ-
ences in adolescents ASD suggest that persistent developmental differences in the neural processes underlying
JA contribute to social interaction difficulties in ASD.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Social interactions form a substantial part of human daily living and
typically develop from fundamental processes during infancy to highly
sophisticated processes in adolescence and adulthood. Impaired social
interactions constitute a core deficit of autism spectrum disorder
(ASD; American Psychiatric Association, 2013) and deficits in the devel-
opment of joint attention (JA) are one of the earliest signs to be at risk
for ASD (Charman, 2003). JA, i.e., the shared attentional focus of two
people on an object or third person, typically develops within the first
two years of life. Other-initiated JA refers to the ability to follow the di-
rection of gaze and gestures of others, whereas self-initiated JA refers to
Aachen, Germany.
elland).
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the ability to use gaze and gestures to direct the attention of others (e.g.,
Mundy et al., 2007; Mundy and Newell, 2007). Several lines of research
suggest that other-initiated and self-initiated JA reflect distinct but
interacting processes. Other-initiated and self-initiated JA follow disso-
ciated developmental pathways during typical early childhood (Brooks
and Meltzoff, 2005) as well as during atypical development (Naber et
al., 2008) and may rely on potentially distinct neural networks
(Mundy and Newell, 2007). In general, JA is considered as a prerequisite
for sophisticated social processes, such as false-belief reasoning. In fact,
JA is assumed to be an important developmental precursor to overall so-
cial and cognitive abilities facilitating human learning and development
(Bruinsma et al., 2004; Charman, 2003; Dawson et al., 2002; Freeman et
al., 2015;Mundy andNewell, 2007). Accordingly, early interventions fo-
cusing on JA also improve other social communicative skills (Dallaire
and Schreibman, 2003; Schertz and Odom, 2007; Whalen et al., 2006).

Despite extensive behavioral research on JA (Bean and Eigsti, 2012;
Charman, 2003; Dawson et al., 2004; Naber et al., 2008), data on the un-
derlying neuronal mechanisms remain scarce, to date (Pfeiffer et al.,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Demographic and questionnaire data. Mean values and standard deviations are given for
IQ, SRS and FSK.

TD participants ASD participants T p Cohen's d

N 16 16
Male 16 16
Age 13.2 (3.20) 14.2 (3.52) −0.89 0.382
IQ 118 (6.33) 111a (17.40) 1.55 0.133
SRS⁎⁎ 19.94 (13.74) 100.31 (23.46) −10.77 b0.001 3.81
FSK⁎⁎ 4.00 (3.61) 20.69 (7.22) −11.70 b0.001 4.14

⁎⁎ Significant difference at p b 0.01.
a IQ score from 15 ASD participants.
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2014; Schilbach et al., 2010). Previous fMRI studies relied on subjects'
mere observation of gaze cues to investigate JA (Materna et al., 2008;
Williams et al., 2005). However, interactive paradigms, simulating social
interaction by means of gaze-contingent responses of the interac-
tion partner, are better suited to capture the interactive character
and reciprocity of JA. They may thus be more appropriate to inves-
tigate the neural mechanisms underlying deficits in ASD (Schilbach
et al., 2010, 2013). To this end, we recently adapted a combined
eye-tracking/fMRI paradigm investigating (self- and other-initiat-
ed) JA in healthy adults (Redcay et al., 2010; Wilms et al., 2010)
for the use in children and adolescents and could, thus, investigate
the developmental trajectories of brain networks supporting JA in
typically developing (TD) children and adolescents (Oberwelland
et al., 2016).

To date, only one study has used an interactive task to investi-
gate the neural correlates of JA in ASD (Redcay et al., 2013). Impor-
tantly, this study focused on adults. Authors reported aberrant
activation in the posterior superior temporal sulcus (STS) and dor-
sal medial prefrontal cortex (dmPFC) during JA in adults with ASD
compared to healthy controls, despite successful established JA,
i.e., no behavioral differences between groups. Consistently, the
STS has been identified as part of the JA network in TD children/ad-
olescents (Oberwelland et al., 2016) and healthy adults (Redcay et
al., 2010; Schilbach et al., 2010), supporting its crucial role in vari-
ous aspects of social functioning (Bzdok et al., 2016; Zilbovicius et
al., 2006). In contrast, in adults with ASD JA has not been found to
elicit STS activity (Redcay et al., 2013). On the other hand, we
could not observe dmPFC activation as part of the JA network in
TD children/adolescents (Oberwelland et al., 2016), suggesting
that dmPFC involvement in JA settings may be less relevant for JA
in children and adolescents and subject to further development
into adulthood.

The temporoparietal junction (TPJ) is located adjacent to the STS and
is known to be involved in basic spatial attention functions (in particular
reorienting of attention), but has also been implicated in social and
emotional processing (Bilek et al., 2015; Frith and Frith, 2003; Krall et
al., 2015; Schulte-Rüther et al., 2011; Schulte-Rüther et al., 2007) in-
cluding JA (Oberwelland et al., 2016; Redcay et al., 2010; Schilbach et
al., 2010). Several studies revealed abnormal activation patterns of the
STS and TPJ in participants with ASD during various aspects of social
and emotional processing (Chaminade et al., 2015; Frith, 2001; Pitskel
et al., 2011; Schulte-Rüther et al., 2011; Wang et al., 2004; Williams et
al., 2006), suggesting that both regions are critically involved in JA and
also implicated in ASD.

In the context of truly interactive paradigms, it is essential to consid-
er that social interactions depend on the relationship of the people
interacting with each other (Oberwelland et al., 2016). In neurotypical
individuals and individuals with ASD, behavior and neural responses
differ as a function of how familiar the interaction partner is (Deaner
et al., 2007; Doyle et al., 1980; Gobbini and Haxby, 2006; Hudry and
Slaughter, 2009; Natu and O'Toole, 2011; Nomi and Uddin, 2015;
Pierce et al., 2004; Pierce and Redcay, 2008; Shah et al., 2001; Sterling
et al., 2008). Consistently, the JA network in TD children/adolescents is
modulated by the familiarity of the interaction partner (Oberwelland
et al., 2016). It remains to be investigated whether familiarity may sim-
ilarly increase or “amplify” the motivational engagement in JA in chil-
dren/adolescents with ASD.

To sumup, the present studywas designed to investigate differences
between young adolescents with and without ASD with respect to the
(1) neural substrates of JA. We hypothesized abnormal activation pat-
terns in areas previously implicated in ASD and JA in children and ado-
lescents (Oberwelland et al., 2016), namely the STS and TPJ.
Furthermore, we expected (2) a modulatory effect by the type of initia-
tion (i.e. self- vs. other-initiation) and (3) familiarity of the interaction
partner. To this end, we devised a task that used a virtual character
set-up (Oberwelland et al., 2016; Schilbach et al., 2010; Wilms et al.,
2010), including both a familiar (i.e., the participant's mother) and an
unfamiliar interaction partner (i.e., identical female stranger for all
participants).

2. Material and methods

2.1. Subjects

In total 16male participants with ASD between 8 and 18 years of age
and 16 TD participants were included in the analyses (see Table 1). TD
participants were selected from a larger dataset (Oberwelland et al.,
2016) to provide a close match in age and IQ in comparison the ASD
group. All participants with ASD had been diagnosed by an independent
clinician and reached cut-offs on theADOS-G (AutismDiagnostic Obser-
vation Schedule) and ADI-R (Autism Diagnostic Interview). TD partici-
pants did not show any indication of developmental delay and had no
history of any psychiatric disorder as assessed by a structured screening
interview assessing various psychiatric disorders and symptoms before
participation.

All participants and a caregiver filled in various questionnaires in
order to assess current psychiatric disorders (Child Behavior Checklist
(CBCL); (Achenbach, 1991)), screening for autistic symptoms (SCQ;
Berument et al., 1999; German version “Fragebogen zur sozialen
Kommunikation”; FSK; Bölte and Poustka, 2006) and dimensional as-
sessment of social functioning (Social Responsiveness Scale (SRS);
Constantino et al., 2003). The FSK provides a sensitive screening for
ASD (sensitivity of 92% against healthy controls). The German version
of the SRS has high internal consistency between 0.91 and 0.97 (Bölte
et al., 2008). The study was carried out at the Research Center Jülich,
Germany, and was approved by the ethics committee of the University
Hospital Aachen, Germany. All participants and/or their caregivers
gave written informed consent/assent to participate in the study.

2.2. fMRI task

We used an interactive, gaze-contingent JA task which has been de-
scribed in detail elsewhere (Oberwelland et al., 2016). In short, partici-
pants were asked to either initiate (i.e., self-initiation) or respond (i.e.,
other-initiation) to gaze interactions in four different conditions that ei-
ther resulted in JA or non-JA (i.e., Control) situations: (1) JA-Self, (2)
Control-Self, (3) JA-Other and (4) Control-Other.

All four conditions were completed with a virtually interacting ava-
tar that depicted an unfamiliar (i.e., identical female stranger for all par-
ticipants) or a familiar interaction partner (i.e., the participant'smother)
resulting in a total of eight conditions. The avatar's behavior consisted of
gaze shifts towards the targets, gaze shifted downwards, and gaze con-
tact with the participant. The virtually avatar's reaction (i.e. gaze behav-
ior) was contingent upon the participant's gaze behavior (depending on
the experimental condition, see Fig. 1 for details). Additionally, a low-
level baseline condition was included, using a black fixation cross on a



Fig. 1. Illustration and timing of all condition-specific gaze-based interaction sequences (IP= Interaction partner). Conditionswere presented in blocks of 18 s,with 3 trials per block. After
each picture cue the participants completed three corresponding interaction trials (~6 s). The intertrial interval varied depending on the participant's reaction time toll fill up ~6 s before
the beginning of the next trial. Note that each time indicated with tilde indicates an average time across participants (Oberwelland et al., 2016).
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white screen displayed for 18 s. In total, the participants completed two
runs, each consisting of 27 blocks, presenting each condition three times
(in total 144 interaction and 18 low level baseline blocks). Blocks were
presented in a pseudo-randomized order ensuring that two identical
blocks were not presented in a row.

We used an fMRI compatible eye-tracking system (Eyelink
1000 system (SR Research, Canada)), allowing for gaze-contingent
experimental set-ups. Fixation within a predefined screen area
(384 × 384 pixels) centered on the targets (i.e., a piece of cheese)
for at least 150 ms was required for detection of target fixation. If no
target fixation was detected within 2400 ms after trial onset the
next trial was shown.
2.3. Behavioral data

Gaze data of participants were analyzed using MATLAB 8.1 and
IBM SPSS Statistics 21. Onset, duration, and location of target fixation
during all conditions were extracted to calculate (1) accuracy, (2) la-
tency to JA, (3) direction of gaze shift towards the target (left, right
or top), and (4) number of saccades after successful fixation of a tar-
get until the appearance of reward. General Linear Models (GLM;
univariate and repeated-measures) were computed in order to test
for interactions and main effects. Mixed ANOVAs with the within-
group factors (JA/Control, Self/Other, Familiar/Unfamiliar) and
between-group factor diagnosis (TD/ASD) were computed. Post-
hoc t-tests were performed to determine differences between
certain conditions.
2.4. Functional magnetic resonance imaging (fMRI)

The fMRI protocol and analysis is identical to the one described in
detail in Oberwelland et al. (2016). In short, scans were acquired on a
3-Tesla Siemens Trio scanner (Erlangen, Germany) and analyzed
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).
Functional images were realigned to the mean image and co-regis-
tered with the participant's individual T1 weighted 3-D MP-RAGE
image. Normalization parameters were determined and functional
volumes were smoothed. Boxcar functions (aligned with the eye-
tracking data) were convolved with a model of the hemodynamic
response function (HRF) and its first-order temporal derivative. The
unsquared and square roots of the movement parameters were
included as additional regressors. All conditions were modeled sepa-
rately in a block design (i.e., one block lasting 18 s) with error trials
modeled as an additional nuisance regressor of no interest (i.e., trials
without appearance of reward). The simple effect of each experimen-
tal condition was taken to the second-level and a random effects
analysis was performed (mixed ANOVA model with within-partici-
pant factors ‘condition’ and one group factor). Initial analyses includ-
ing age as a covariate revealed no influence of age (i.e., main effect
and interaction) within this sample. In a second step, we examined
the effect of type of initiation and familiarity separately within the
ASD and TD group for specific contrasts in which activation did not
exceed the threshold for statistical significance at the chosen thresh-
old (i.e., at p b 0.05 cluster-level FWE corrected (p b 0.001 voxel-
level). Moreover, we also investigated brain-behavior correlations
in order to increase validity of our findings. The SPM8 anatomy

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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toolbox (Eickhoff et al., 2007) was used to assign anatomical labels to
the functional results of the second-level analysis, which were addi-
tionally compared to Brodmann and AAL templates in MRICroN.

3. Results

3.1. Demographic data and questionnaires

Table 1 summarizes the sample that was included in the analyses
and their average scores on the questionnaire data. As expected, ASD
participants scored significantly higher on the FSK and SRS.

3.2. Behavioral data

3.2.1. Accuracy
Successful trials were noted if the participants fixated target location

and hence the reward (i.e., a mouse behind the cheese) appeared at the
target location. Unsuccessful trialswere primarily due to technical prob-
lems or inaccuracy of the eye-tracking set-up (Oberwelland et al., 2016).
TD participants had on average 69% successful trials and participants
with ASD 73%, which were included in fMRI condition regressors. A
mixed ANOVAwith thewithin-group factors (JA/Control, Self/Other, Fa-
miliar/Unfamiliar) and the between-group factor (TD/ASD) were com-
puted to examine significant differences between the number of
errors made for specific conditions. First, there was a main effect for JA
(F(1,30) = 7.04, p b 0.01, ηp2 = 0.32), with more correct trials in Con-
trol (M = 73.74%; SD = 21.00) compared to JA (M = 69.44%; SD =
20.52) conditions across groups. Second, there was a significant
Self × Familiar × Group (F(1,30)= 10.21, p b 0.01, ηp2= 0.25) interac-
tion. Post-hoc paired sample t-test revealed that when interacting with
the familiar interaction partner, TD participants had significantly more
correct trials (t(30) = 2.31, p b 0.05) in the other-initiated (M =
76.90%; SD = 19.60) compared to the self-initiated interactions (M =
71.53%; SD = 23.02), but no difference in accuracy between self- and
other-initiation with the unfamiliar interaction partner (t(30) = 0.07,
p N 0.05). ASD participants had significantly more correct trials
(t(30)=2.69, p b 0.05) during interactionswith the familiar interaction
partner when self-initiated (M = 75.00%; SD = 20.79) than when
other-initiated (M = 65.10%; SD = 24.30), and also no difference be-
tween self- and other-initiation with the unfamiliar interaction partner
(t(30)= 0.15, p N 0.05). Importantly, even though this three-way inter-
action was significant, differences in the average percentage of correct
trials were small. Of note, all of these behavioral differences are unlikely
to affect the results on the neural level, since the analyses of neural cor-
relates only included correct trials. For a complete overview of the per-
centages of correct trials per condition per group please refer to
Supplement Table 1.

3.2.2. Latency to JA and NoJA
Latency was defined as the reaction time of the participant either in

response to a social (i.e., JA-Other) or external non-social cue (Control-
Other) or the time to freely choose a target location in response to trial
onset (JA-Self/Control-Self). AmixedANOVAwith thewithin-group fac-
tors (JA/Control, Self/Other, Familiar/Unfamiliar) and the between-
group factor (TD/ASD) revealed a significant JA x Self interaction
(F(1,30) = 25.84, p b 0.001, ηp2 = 0.44) and a main effect for JA
(F(1,30) = 11.61, p b 0.01, ηp2 = 0.28). Post-hoc paired sample t-test
showed that participants were significantly faster (t(30) = 5.69,
p b 0.001) in the Control-Other condition (M= 0.65; SD= 0.14) com-
pared to the JA-Other condition (M = 0.80; SD = 0.14), but showed
comparable reaction times for JA-Self and Control-Self (t(30) = 0.75,
p N 0.05). Importantly, there was no difference between TD and ASD
(nomain effect of group nor any interactionwith group). The difference
in latency for the other-initiated conditions is most likely due to the
higher saliency of the external non-social cue in the Control-Other
conditions compared to themore subtle gaze cue in the JA-Other condi-
tion (Oberwelland et al., 2016).
3.2.3. Direction of JA
To ensure that participants actually made choices during self-initiat-

ed conditions and selected targets at different locations, we compared
the mean number of target choices for all locations. TD and ASD partic-
ipants distributed their choices among all target locations (TD: top tar-
get:M=45.77%; left target:M=24.00%; and right target:M=30.50%;
ASD: top target: M= 48.65%; left target: M= 25.44%; and right target:
M = 26.30%). In accordance with previous results (Oberwelland et al.,
2016), participants made more gaze shifts towards the top target. A
mixed ANOVA with within-group factors (JA/Control and Familiar/Un-
familiar) and between-group factor (TD/ASD) revealed no significant
interaction ormain effect supporting the conclusion that the preference
for the top-target is due to a tendency for our technical set-up to recog-
nize fixations at the top target most reliably (Oberwelland et al., 2016).
3.2.4. Saccades: number of saccades between target fixation and reward
appearance

Since participants were uncertain whether the interaction partner
followed their gaze or not during self-initiated conditions, they could
potentially shift their gaze back and forth between target and interac-
tion partner. Mixed ANOVA of the number of saccades for the within-
group factors (JA/Control and Familiar/Unfamiliar) and between-
group factor (TD/ASD) revealed no significant interaction ormain effect.
On average participants shifted 2.01 times back and forth between tar-
get and interaction partner indicating that the reaction of the interac-
tion partner was important to the participant.
3.3. Neural correlates

3.3.1. Between-group differences for joint attention (JA N Control)
We hypothesized that young adolescents with ASD elicit differential

activation patterns during JA compared to Control conditions in areas
previously implicated in ASD and JA in children and adolescents
(Oberwelland et al., 2016), namely the STS and TPJ.
3.3.1.1. TD versus ASD participants. Direct comparison of engagement in
JA (irrespective of type of initiation and familiarity of the interaction
partner [(JA-Self + JA-Other) N (Control-Self + Control-Other)]) re-
vealed a significant difference between TD and ASD participants in
two clusters of brain regions (Fig. 2 and Table 2). One cluster mainly
comprised the right temporal lobe including the superior temporal
pole, middle temporal gyrus (MTG) and STS. A second clusterwas locat-
ed at the left parietal lobe including the TPJ, precuneus and inferior pa-
rietal lobe. Examination of the contrast estimates at the peak voxels of
the two clusters revealed a significant group x condition interaction
(F(1,30)=8.43, p b 0.01) that in the right temporal pole TDparticipants
showed greater activation during JA than Control, while ASD partici-
pants had no significant difference in activation during JA and Control
(see Fig. 2B). In the left precuneus we also observed a significant
group x condition interaction (F(1,30) = 14.71, p b 0.01), TD partici-
pants showed a differential activation for JA and Control whereas ASD
participants showed comparable activation (see Fig. 2A). The inverse
contrast, ASD N TD, did not reveal any significant difference in activation
between groups. Furthermore, direct group comparisons related to spe-
cific effects for familiarity and type of initiation did not exceed the
threshold for statistical significance. Therefore, in the next step, modu-
lation of neural activation patterns by type of initiation and familiarity
were examined separately within the ASD and TD group and brain-be-
havior correlations were investigated within the ASD group.



Table 2
Neural correlates comparing TD N ASD participants for the main effect of JA (at p b 0.05
cluster-level FWE corrected (p b 0.001 voxel-level); MNI coordinate of principally activat-
ed voxels for each cluster are given).

Brain region x y z k T

Group differences (TD N ASD) for joint attention (JA N Control)
Right temporal pole 48 8 −16 2062 4.60

Right middle temporal gyrus (MTG) 56 −18 −8 4.25
Right superior temporal sulcus (STS) 48 −18 8 4.22

Left angular gyrus −38 -60 42 1537 3.87
Left precuneus −14 −50 40 3.70
Left TPJ −58 −56 40 3.69

Fig. 2. Neural correlates of the main effect for JA comparing TD N ASD participants and contrast estimates at the location of the corresponding peak voxel; blue: TD participants, red: ASD
participants. All activations depict statistically significant neural activity at cluster-level p b 0.05 FWE corrected, voxel-level p b 0.01. Panels A and B are bar graphs depicting contrast
estimates at the two corresponding peak voxel (JA: JAself + JAother; Control: Controlself + Controlother, for each group separately).
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3.3.2. Neural correlates of within – group differences for TD and ASD
participants

3.3.2.1. Common activations for self-sustained interactions (SELF NOTHER).
With respect to the within-group differences for TD participants we
expected a broad bilateral network including frontal and parietal brain
areas (Oberwelland et al., 2016). With respect to ASD participants we
hypothesized abnormalities in self-other distinction and difficulties in
initiating social interaction, probably associated with less distinct
activation in brain areas underlying self- and other initiated interactions
(Kennedy and Courchesne, 2008; Lombardo et al., 2010; Schulte-Rüther
et al., 2013; Vogeley et al., 2004; Vogeley and Fink, 2003).

3.3.2.1.1. TD participants. Initiating the interaction regardless of JA
and familiarity, that is the main effect of SELF [(JA-Self + Control-
Self) N (JA-Other + Control-Other)], resulted in the recruitment of the
superior medial frontal gyrus (FG) [(0, 30, 40), t=5.58], bilateral insula
[L: (−36, 20, −2), t = 4.95; R: (36, 22, −6), t = 4.56], right middle
frontal gyrus (MFG) [(46, 22, 40), t = 4.80] and a cluster in visual
areas centered upon the left cuneus [(−6, −90, 18), t = 4.71].

3.3.2.1.2. ASD participants.Within the ASD group, no significant acti-
vation at the chosen threshold was observed for themain effect of SELF.
Therefore, we examined whether neural activity within the SELF-net-
work as revealed in TD participants, was related to the severity of defi-
cits in social communication in ASD as assessed by the respective
subscale of the SRS questionnaire. This subscale captures best those
skills which are necessary for self-sustained interaction, as evident
during SELF conditions. The scale entails items related to initiating inter-
actions or actively reacting to social stimuli (e.g. communicating feel-
ings, maintaining gaze contact, entertaining relationships with peers
and following the flow of a normal conversation). We used the individ-
ual SRS-Social Communication scores as a regressor and the individual
contrast estimates related to SELF conditions in a whole-brain regres-
sion analysis within ASD participants, applying the SELF network of
TD participants as a functional ROI. This analysis revealed the left supe-
rior medial FG [(−4, 42, 38), t = 4.30] and MFG [(−50, 28, 32), t =
4.72] to be correlated with the SRS-Social Communication scores, im-
plying that less severely affected participants showedmore frontal acti-
vation during self-initiated interactions.
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3.3.2.2. Common activations for other-sustained interactions
(OTHER N SELF). For the main effect of OTHER [(JA-Other + Control-
Other) N (JA-Self + Control-Self)], we hypothesized to obtain similar
findings within both groups, mainly activation in visual processing
areas.

3.3.2.2.1. TD participants. Responding to the gaze shift by the interac-
tion partner or to the external cue regardless of familiarity, that is the
main effect of OTHER, elicited significant activation in the bilateral oc-
cipital gyrus [L: (−28,−96, −8), t = 5.60; R: (30,−92, 2), t = 7.82].

3.3.2.2.2. ASD participants. Similarly, ASD participants elicited signifi-
cant activation in the bilateral occipital gyrus [L: (−24, −94, −2),
t = 5.60; R: (26, −94, −2), t = 6.17].

3.3.2.3. Common activations for interactions with a familiar interaction
partner (Familiar N Unfamiliar).With respect to the within-group differ-
ences for TD participants, we hypothesized that interactions with a fa-
miliar interaction partner recruit additional areas related to social and
emotional processing. With respect to the within-group differences for
ASD participants, we hypothesized to observe similar findings aswithin
the TD group, yet a more pronounced differentiation in brain activation
between familiar and unfamiliar interactions, which has already been
reported for familiarity and face processing (Pierce et al., 2004; Pierce
and Redcay, 2008; Sterling et al., 2008).

3.3.2.3.1. TD participants. Interacting with a familiar partner,
regardless of JA and Self/Other, that is the main effect for FAMILIAR
[(JA_Familiar + Control_Familiar N (JA_Unfamiliar + Control_
Fig. 3.Neural correlates for the interaction JA × Familiarity × Self within the TD and ASD group s
sf = JA-Self-Familiar, su= JA-Self-Unfamiliar, of = JA-Other-Familiar, ou= JA-Other-Unfamilia
corrected, voxel-level p b 0.01. *significant at p b 0.01.
Unfamiliar)], did not result in any significant activation at the chosen
threshold. The inverse contrast, that is the main effect for
UNFAMILIAR [(JA_Unfamiliar+ Control_Unfamiliar N (JA_Familiar+
Control_Familiar)], revealed no significant activation at the chosen
threshold.

3.3.2.3.2. ASD participants. In contrast, ASD participants showedwide-
spread activations in response to familiarity. Brain regions activated in-
cluded the striatum [(−12, −6, −8), t = 4.62], left insula [(−28, 12,
−18), t = 3.92], temporal pole [(−36, 24, −22), t = 3.87], right IFG
[(50, 32, 12), t = 3.98], bilateral superior medial FG [L: (−8, 60, 24),
t = 4.11; R: (8, 60, 22), t = 4.56], left MTG [(−56, −6, −18), t =
4.47], bilateral fusiform gyrus [L: (−42, −56, −12), t = 4.58; R: (42,
−60,−16), t=4.46], left precuneus [(0,−60, 34), t=4.56], right infe-
rior occipital gyrus [(38,−82,−14), t=4.46] and right precentral gyrus
[(50, 8, 32), t=4.27]. The inverse contrast, that is themain effect for UN-
FAMILIAR, did not reveal significant activation at the chosen threshold.

3.3.2.4. Common activations for statistical interaction JA × Self × Familiar.
Within the TDgroup,we hypothesized amodulatory effect of familiarity
specifically for self-initiated JA, as already described for our bigger TD
developmental sample (Oberwelland et al., 2016). Within the ASD
group, we explored whether a modulatory effect of familiarity could
be observed at all, or would entail additional brain regions.

3.3.2.4.1. TD participants. A significant three-way interaction
was marginally evident for JA × Self × Familiar [(JA-Self N Control
Self) N (JA-Other N Control-Other)]familiar N [(JA-Self N Control-Self) N
(JA-Other N Control-Other)]unfamiliar in a cluster centered upon the left
eparately. Contrast estimates at the location of the corresponding peak voxel are depicted;
r. All activations depict statistically significant neural activity at cluster-level p b 0.05 FWE
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inferior FG [(−36, 2, 30), t=4.05, p = 0.085] (see Fig. 3A). Post-hoc t-
tests on beta estimates extracted from the corresponding regions re-
vealed that the interaction was mostly driven by a familiarity effect for
JA-Self (familiar N unfamiliar; respectively, M = 0.65, SD = 0.91 and
M = −0.38, SD = 0.61; p b 0.01) (see Fig. 3B).

3.3.2.4.2. ASD participants. A significant three-way interaction was
evident for JA × Self × Familiar [(JA-Self N Control-Self) N (JA-Other N
Control-Other)]familiar N [(JA-Self N Control-Self) N (JA-Other N Control-
Other)]unfamiliar in the right fusiform gyrus [(38, −46, −18), t = 4.52]
(see Fig. 3A). Post-hoc t-tests on beta estimates extracted from the cor-
responding region revealed that the interaction was mostly driven by a
familiarity effect for JA-Self (familiar N unfamiliar; respectively, M =
0.68, SD = 0.61 and M = −0.52, SD = 0.66; p b 0.001) (see Fig. 3B).
All further interaction contrasts did not yield significant results.

4. Discussion

This is the first study to investigate the JA network in young adoles-
cents with ASD by using an interactive, gaze-contingent eye-tracking
paradigm during fMRI. We additionally examined the effects of self-
versus other-initiation and the effect of a familiar versus non-familiar
interaction partner. We observed abnormal activation during JA in
brain regions associated with social cognition (Krall et al., 2015; Olson
et al., 2007) and disturbed social and emotional functioning in ASD
(Allison et al., 2000; Chaminade et al., 2015; Davies et al., 2011; Frith,
2001; Georgescu et al., 2013; Kuzmanovic et al., 2013; Lombardo et al.,
2010; Pitskel et al., 2011; Redcay et al., 2013; Schulte-Rüther et al.,
2011;Wang et al., 2004;Watanabe et al., 2012; Zilbovicius et al., 2006).

4.1. The general JA network

Consistent with previous research on social cognition and JA in
adults (Redcay et al., 2013), we observed that JA in young adolescents
with ASD resulted in deviant activation patterns in a network of areas
(see Fig. 2) associated with the so-called “social brain”, including the
key nodes temporal pole, STS, TPJ, and precuneus (Schilbach, 2016), de-
spite successfully established JA on the behavioral level. Previously, we
could demonstrate that in TD children and adolescents these brain re-
gions play an important role for the experience of JA (Oberwelland et
al., 2016). This result suggests subtle, but persistent JA difficulties in
children and adolescents with ASD, despite basic functionality, which
might be related to difficulties in more sophisticated social interactions,
typically accompanying individuals with ASD lifelong.

The temporal pole and STS both play a key role in social and emo-
tional processing and functional abnormalities have consistently been
reported for various aspects of social processing in ASD (Allison et al.,
2000; Carrington and Bailey, 2009; Gallagher and Frith, 2003; Greimel
et al., 2010; Kennedy and Courchesne, 2008; Olson et al., 2007;
Schulte-Rüther et al., 2011; Völlm et al., 2006; Zilbovicius et al., 2006).
With respect to the STS, these aspects of social processing range from
basic perceptual (such as recognizing a specific individual and perceiv-
ing a voice) tomore complex aspects (such as analyzing perceptual cues
with respect to theirmeaningful contribution to social communication).
These processes are crucial for JA because eye movements need to be
analyzedwith respect to a given social context in order to extractmean-
ingful cues for social communication (Zilbovicius et al., 2006). Note, that
we report here a rather anterior region of the STS. This is in line with
various studies suggesting that in addition to posterior STS, anterior
parts of the STS are also implicated in mentalizing (Schnell, 2014;
Schnell et al., 2011; Schulte-Rüther et al., 2012). Olson et al. (2007) sug-
gested that the temporal pole ties complex, highly processed perceptual
inputs to instinctive emotional responses. Reduced STS and temporal
pole activation in ASD, as revealed in the current study thus, could be
taken to suggest less elaborate processing during basic JAwithin the so-
cial cognition network andmight underlie the lifelongobserveddifficul-
ties of ASD individuals in more complex social interactions.
In addition, adolescents with ASD showed abnormal activation in
the TPJ and precuneus. These regions have previously been implicated
in social information processing (Bilek et al., 2015; Cavanna and
Trimble, 2006; Decety and Lamm, 2007; Samson et al., 2004; Saxe,
2006; Schulte-Rüther et al., 2011, 2007), and self-other differentiation
(Pfeifer et al., 2007; Platek et al., 2008; Saxe et al., 2006; Vogeley et al.,
2004; Vogeley and Fink, 2003). The ability to differentiate mental states
as originating from oneself or other people is at the heart of complex so-
cial reasoning such as in Theory of Mind (ToM) and false belief process-
ing. Deficits in ToMand false belief processing in childrenwith ASDhave
been demonstrated and persist during adolescence (Schulte-Rüther et
al., 2011, 2013; Senju, 2011). Even though explicit reasoning related to
mental states (such as in a classical ToM task) was not involved, our
JA task encompassed implicit inferences of themental state of the inter-
action partner. In young adolescents with ASD, a ToM deficit appears to
be reflected by engagement of the TPJ/precuneus for all conditions in-
volving potential gaze interaction (i.e., JA-Self, Control-Self, JA-Other),
thus pointing towards reduced neural specialization in patients, where-
as in TD participants activation in the left inferior frontal gyrus is specif-
ically apparent for successfully established JA, but not for control
situations (see Fig. 2A). Alternatively, this lack of condition-specific dif-
ferences may reflect a higher demand on TPJ/precuneus circuitry for
basic JA processes in young adolescence with ASD, as opposed to higher
demands for evaluating self-initiated interactions in young TD adoles-
cence. A similar lack of neural developmental specialization within the
STS has been suggested previously in adults with ASD (Redcay et al.,
2013). Both findings might thus suggest a more general lack of neural
developmental specialization within “social brain” areas in individuals
with ASD. Interestingly,we previously observed a similar lack of special-
ization in TPJ recruitment during early development in TD children
compared to TD adolescents (Oberwelland et al., 2016). The observed
lack of neural developmental specialization in TPJ may thus hint at a
protracted development of neural specialization in ASD. However, to
disentangle this possibility from a fundamental deficiency in TPJ circuit-
ry in JA, further studies are warranted, which need to examine the de-
velopmental trajectories during early and late adolescence in ASD in
more detail by directly comparing both age groups in a bigger sample
with children and adolescents with ASD.

4.2. JA and its modulation by type of initiation

We also observed that parts of the network underlying self-initiated
interactions correlated negatively with symptom severity in social com-
munication in ASD. This finding might suggest that young adolescents
with ASD who are more severely affected and hence have greater defi-
cits in social communication seem to show reduced activation in frontal
brain regions (i.e., MPFC) that are typically recruited during self-initiat-
ed interactions and mentalizing. This can be discussed in terms of ab-
normal self-other distinction (Kennedy and Courchesne, 2008;
Lombardo et al., 2010; Schulte-Rüther et al., 2013; Vogeley et al.,
2004; Vogeley and Fink, 2003) or impairments in the disengagement
of visual attention (see for review: Keehn et al., 2013) in individuals
with ASD. First, note that the ability to differentiate oneself from others
enables us to take others' perspective, which in turn is the foundation
for complex social cognition such as ToM and empathy. Accordingly, in-
dividuals with ASD who are less affected had stronger activations relat-
ed to self-initiated interactions as opposed to other-initiated
interactions, suggesting a better self-other distinction represented in
their brain. This also concords early behavioral findings, which indicate
that specifically self-initiated JA is related to social-communication
skills (Pickard and Ingersoll, 2014).

Alternatively, impairment in the disengagement of visual attention
has been reported largely in individuals with ASD (Keehn et al., 2013)
and has been identified as one the earliest marker in infants at high
for ASD (Elsabbagh et al., 2013; Ronconi et al., 2014). In fact, a disen-
gagement deficit may particularly affect self-initiated conditions when
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participants are required to voluntarily disengage their attention from
the face and reorient towards one of the targets.

4.3. JA and its modulation by familiarity

Within the TD and ASD group separately, we found distinct modula-
tory effects of familiarity. In TD participants, activation was particularly
enhanced during self-initiated JA with a familiar interaction partner in
the left inferior frontal gyrus (see Fig. 3A), demonstrating modulation
of brain regions related to attention control systems and replicating
our previous findings in TD participants (Oberwelland et al., 2016).

In ASD participants, conditions with a familiar interaction partner
elicited enhanced activation in a broad network including in the left
insula, temporal pole, fusiform gyrus, precuneus, MTG, and IFG as well
as the right fusiformgyrus,MFG, precentral gyrus and IFG. This is consis-
tent with previous studies suggesting differential brain activity for fa-
miliar and unfamiliar faces in individuals with ASD (Pierce et al., 2004;
Pierce and Redcay, 2008; Sterling et al., 2008). We here indicate for
thefirst time that amodulatory effect of familiarity in ASD is particularly
valid for interactive situations. In contrast, in TDparticipants, we did not
observe such a far-reaching effect of familiarity on brain areas. However,
while we can firmly conclude that familiarity influences neural signa-
tures of social interaction in ASD, we can only speculatewhether this ef-
fect is even stronger than for TD individuals, since the direct interaction
of group and familiarity did not exceed the threshold for statistical sig-
nificance. However, this interesting finding resulting from the analyses
within the ASD group may impact upon the development of interven-
tions/trainings for individuals with ASD. It might be particularly benefi-
cial to incorporate familiar others in the training so that skills to be
learned can be communicated most efficiently and transferred to daily
situations outside the intervention environment.

The use of the maternal face as the familiar interaction partner cer-
tainly not only includes familiarity of an observed face, but also the com-
plex mother-child relationship, which might have far-reaching effects
on social cognition in ASD. For example, specific cues related to ones
own mother (e.g. maternal odors) may influence social abilities such
as automatic imitation in ASD (Parma et al., 2013). (Casartelli et al.,
2016). Further research is needed to disentangle familiarity and moth-
er-child relationship and their specific influence on JA.

Furthermore, we observed an interaction of type of initiation and fa-
miliarity on JA both for TD and ASD participants, but within different
brain regions (see Fig. 3). Within the ASD group, an effect of familiarity
was particularly evident for self-initiated JA in the right fusiform gyrus
(see Fig. 3B), showing enhanced activation in these situations when
interacting with the mother. The right fusiform gyrus plays an impor-
tant role in face processing (Kanwisher et al., 1997), with reduced acti-
vation in response to faces in individuals with ASD compared to healthy
individuals. The fusiform gyrus has thus been suggested to underlie so-
cial interaction deficits in ASD (Grelotti et al., 2002; Pierce et al., 2004;
Pierce and Redcay, 2008; Schultz, 2005). More recently the fusiform
gyrus is also conceived as a more general “expert visual perception”
area (Gauthier et al., 2000; Gauthier et al., 1999), showing enhanced ac-
tivation for any object individuals are experts in. In a single case study,
enhanced activation of the fusiform gyrus has been associated with ex-
pertise in non-social stimuli such as Cartoon characters (Grelotti et al.,
2005). Our results now demonstrate for the first time stronger activa-
tion of the fusiform gyrus in response to a familiar face (here the own
mother) in ASD, particularly in the context of self-initiated interaction.
This pattern of results supports the idea that reduced activation in the
fusiform gyrus in ASD may typically reflect reduced expertise in face
processing as a consequence of reduced interest in social interaction
(Chevallier et al., 2012; Grelotti et al., 2002). At the same time it sug-
gests a greater level of facial processing for the interaction with familiar
interaction partners, in particular during self-initiated interaction, again
stressing the link betweenmotivational aspects and perceptual process-
ing of facial stimuli.
Interestingly, interactions between familiarity and type of initiation
on the neural levelwere paralleled by similarmodulations of the behav-
ioral data. While ASD participants had significantly more correct trials
during self-initiated interactions with their mother as opposed to
other-initiated interactions, TD participants showed a reversed pattern.
In contrast, TD and ASD groups revealed no significant difference in
their interactions with the unfamiliar partner. Eye movements typically
become more predictable with increased exposure and familiarity
(Althoff and Cohen, 1999; Barton et al., 2006) and our data demonstrate
that familiarity of a face also influences eyemovements and/or patterns
of spatial attention during JA. In particular, our data suggest that ASD
have a particular advantage for initiating interactions with a familiar in-
teraction partner, whereas TD participants have an advantage for fol-
lowing the gaze of a familiar interaction partner.

5. Conclusion

In summary, the present study compared for the first time brain net-
works associated with JA in young TD and ASD adolescents using an in-
teractive eye-tracking and fMRI paradigm to study JA during real-time
social interaction. We observed profound differences in the JA network
in TD and ASD adolescents in a relative late stage of development
(young adolescents). Furthermore, our data suggest a modulation of
the JA network by type of initiation and ‘familiarity’ of the interaction
partner within the ASD. Our results significantly extend previous find-
ings of the behavioral and neural correlates of social interaction and
communication in ASD and further advance our understanding of social
cognition impairments during development. Our findings underline
that even very basic forms of gaze-based social interaction (without no-
ticeable differences in behavioral performance) are associatedwith pro-
found differences in the underlying neural bases. This might have far-
reaching implications for more sophisticated social interactions sug-
gesting continued effects of JA disturbance in infants and young children
with ASD into adolescence and adulthood.
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