386 research outputs found

    He and Ne ages of large presolar silicon carbide grains: Solving the recoil problem

    Get PDF
    Knowledge about the age of presolar grains provides important insights into Galactic chemical evolution and the dynamics of grain formation and destruction processes in the Galaxy. Determination from the abundance of cosmic ray interaction products is straightforward, but in the past has suffered from uncertainties in correcting for recoil losses of spallation products. The problem is less serious in a class of large (tens of micrometer) grains. We describe the correction procedure and summarise results for He and Ne ages of presolar SiC "Jumbo" grains that range from close to zero to ~850 Myr, with the majority being less than 200 Myr. We also discuss the possibility of extending our approach to the majority of smaller SiC grains and explore possible contributions from trapping of cosmic rays.Comment: Publications of the Astronomical Society of Australia, Contribution to PASA special volume "The Origin of Elements Heavier than Iron in honor of the 70th birthday of Roberto Gallino

    Numerical calculation of magnetic form factors of complex shape nano-particles coupled with micromagnetic simulations

    Get PDF
    We investigate the calculation of the magnetic form factors of nano-objects with complex geometrical shapes and non homogeneous magnetization distributions. We describe a numerical procedure which allows to calculate the 3D magnetic form factor of nano-objects from realistic magnetization distributions obtained by micromagnetic calculations. This is illustrated in the canonical cases of spheres, rods and platelets. This work is a first step towards a 3D vectorial reconstruction of the magnetization at the nanometric scale using neutron scattering techniques.Comment: 7 pages, 5 figures. To appear in Physics Procedi

    Haptic feedback in mixed-reality environment

    Get PDF
    The training process in industries is assisted with computer solutions to reduce costs. Normally, computer systems created to simulate assembly or machine manipulation are implemented with traditional Human-Computer interfaces (keyboard, mouse, etc). But, this usually leads to systems that are far from the real procedures, and thus not efficient in term of training. Two techniques could improve this procedure: mixed-reality and haptic feedback. We propose in this paper to investigate the integration of both of them inside a single framework. We present the hardware used to design our training system. A feasibility study allows one to establish testing protocol. The results of these tests convince us that such system should not try to simulate realistically the interaction between real and virtual objects as if it was only real object

    Ordered arrays of magnetic nanowires investigated by polarized small-angle neutron scattering

    Full text link
    Polarized small-angle neutron scattering (PSANS) experimental results obtained on arrays of ferromagnetic Co nanowires (ϕ≈13\phi\approx13 nm) embedded in self-organized alumina (Al2_{2}O3_{3}) porous matrices are reported. The triangular array of aligned nanowires is investigated as a function of the external magnetic field with a view to determine experimentally the real space magnetization M⃗(r⃗)\vec{M}(\vec{r}) distribution inside the material during the magnetic hysteresis cycle. The observation of field-dependentSANSintensities allows us to characterize the influence of magnetostatic fields. The PSANS experimental data are compared to magnetostatic simulations. These results evidence that PSANS is a technique able to address real-space magnetization distributions in nanostructured magnetic systems. We show that beyond structural information (shape of the objects, two-dimensional organization) already accessible with nonpolarized SANS, using polarized neutrons as the incident beam provides information on the magnetic form factor and stray fields \textgreek{m}0Hd distribution in between nanowires.Comment: 13 pages, 10 figures, submitted to Phys. Rev.

    Adsorption of MultiLamellar tubes with a temperature tunable diameter at the air-water interface: a process driven by the bulk properties

    Get PDF
    The behavior at the air/water interface of multilamellar tubes made of the ethanolamine salt of the 12-hydroxy stearic acid as a function of the temperature has been investigated using Neutron Reflectivity. Those tubes are known to exhibit a temperature tunable diameter in the bulk. We have observed multilamellar tubes adsorbed at the air/water interface by specular neutron reflectivity. Interestingly, at the interface, the adsorbed tubes exhibit the same behavior than in the bulk upon heating. There is however a peculiar behavior at around 50\degree for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decrease after what they melt as observed in the bulk. All structural transitions at the interface are nevertheless shown to be quasi-completely reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature

    Neutron scattering on magnetic surfaces

    Get PDF

    Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2 coverage area

    Get PDF
    Porous alumina masks are fabricated by anodization of aluminum films grown on both semiconducting and insulating substrates. For these self-assembled alumina masks, pore diameters and periodicities within the ranges of 10–130 and 20–200nm, respectively, can be controlled by varying anodization conditions. 20nm periodicities correspond to pore densities in excess of 1012 per square inch, close to the holy grail of media with 1Tbit∕in.2 density. With these alumina masks, ordered sub-100-nm planar ferromagnetic nanodot arrays covering over 1cm2 were fabricated by electron beam evaporation and subsequent mask lift-off. Moreover, exchange-biased bilayer nanodots were fabricated using argon-ion milling. The average dot diameter and periodicity are tuned between 25 and 130nm and between 45 and 200nm, respectively. Quantitative analyses of scanning electron microscopy (SEM) images of pore and dot arrays show a high degree of hexagonal ordering and narrow size distributions. The dot periodicity obtained from grazi..

    IMAGINE: A Cold Neutron Imaging Station at the Laboratoire Léon Brillouin

    Get PDF
    AbstractA second cold neutron imaging station has been open to users at the Laboratoire Léon Brillouin. The station is designed for high resolution neutron imaging and tomography. The typical field of view is 100x100 mm2 with a spatial resolution of 100μm. Betterspatial resolutions (∼50μm) can be achieved when reducing the field of view down to 30x30mm2. The L/D ratio can be varied from 200 to1000with pinhole sizes ranging from 20 to7mm. Future upgrades will provide capabilities for energy resolved measurements using either a velocity selector or a double crystal monochromator. The possibility to perform polarized neutron experiments will also be provided next year

    Exchange bias in Co/CoO core-shell nanowires: Role of the antiferromagnetic superparamagnetic fluctuations

    Full text link
    The magnetic properties of Co (=15 nm, =130nm) nanowires are reported. In oxidized wires, we measure large exchange bias fields of the order of 0.1 T below T ~ 100 K. The onset of the exchange bias, between the ferromagnetic core and the anti-ferromagnetic CoO shell, is accompanied by a coercivity drop of 0.2 T which leads to a minimum in coercivity at ∼100\sim100 K. Magnetization relaxation measurements show a temperature dependence of the magnetic viscosity S which is consistent with a volume distribution of the CoO grains at the surface. We propose that the superparamagnetic fluctuations of the anti-ferromagnetic CoO shell play a key role in the flipping of the nanowire magnetization and explain the coercivity drop. This is supported by micromagnetic simulations. This behavior is specific to the geometry of a 1D system which possesses a large shape anisotropy and was not previously observed in 0D (spheres) or 2D (thin films) systems which have a high degree of symmetry and low coercivities. This study underlines the importance of the AFM super-paramagnetic fluctuations in the exchange bias mechanism.Comment: 10 pages, 10 figures, submitted to Phys. Rev.
    • …
    corecore