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Abstract

We investigate the calculation of the magnetic form factors of nano-objects with complex geometrical shapes and non

homogeneous magnetization distributions. We describe a numerical procedure which allows to calculate the 3D mag-

netic form factor of nano-objects from realistic magnetization distributions obtained by micromagnetic calculations.

This is illustrated in the canonical cases of spheres, rods and platelets. This work is a first step towards a 3D vectorial

reconstruction of the magnetization at the nanometric scale using neutron scattering techniques.

© 2012 Published by Elsevier BV. Selection and/or peer-review under responsibility of the organizing committee for

PNCMI 2012.
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1. Introduction

The recent progress in solid state chemistry has led to the possibility of synthesizing nano-objects of

non spherical shapes: wires by organometallic chemistry [2] or electrochemistry [1]. In particular, the use

of the polyol process has made it possible to produce well defined monodisperse magnetic nano-objects.

Depending on the synthesis conditions, various shapes of particles can be obtained such as rods, wires,

dumbbells, diabolos, platelets... (see Figure 1) [3, 4, 5]. These are the typical forms of magnetic nano-

objects which will be the focus of this communication. While magnetic nanospheres (as found for example

in ferrofluids) have been extensively studied by Small Angle Neutron Scattering [6, 7, 8, 9, 10, 11], more

complex shaped magnetic nano-objects have rarely been studied.

In this communication we focus on the detailed description and calculation of neutron scattering on

magnetic nano-objects in SANS experiments. We describe numerical tools to calculate the magnetic form

factors of arbitrary shape nano-objects. We present a practical procedure which allows to calculate magnetic

form factors either from an a priori knowledge of the magnetization distribution or from a minimization of

the micro-magnetic configuration.
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(a) (b) (c) (d)
40 nm

Figure 1. TEM images of magnetic nano-objects synthesized in various conditions: (a) Co80Ni20 nanowires with rounded tips of length

200 nm and diameter 7 nm ; (d) Co50Ni50 dumbbells ; (e) Co diabolos and (f) Co platelets.

2. Nuclear and magnetic form factors calculations for neutrons

In this section we first recall the interaction of neutrons with small nano-objects. We introduce the nu-

clear and magnetic form factors of nano-objects and describe the quantities which can be measured in a

Polarized Small Angle Neutron Scattering (PSANS) experiment. A practical way of calculating the mag-

netic form factor of complex nano-objects is then presented.

2.1. Nuclear and magnetic form factors

Let us consider a magnetic nano-object of nuclear Scattering Length Density (SLD) ρ
(
�r
)

which creates

an induction distribution
−→
B

(
�r
)
. We define the nuclear form factor fN( �Q) as the Fourier transform of the

nuclear SLD distribution, �Q = �k f − �ki being the scattering wave-vector:

fN

(
�Q
)
∝

∫∫∫
ρ
(
�r
)

e−i �Q.�rd�r (1)

Similarly we define the magnetic form factor �fB

(
�Q
)

as the Fourier transform of the induction field
−→
B

(
�r
)
:

�fB

(
�Q
)
∝

∫∫∫
�B

(
�r
)

e−i �Q.�rd�r (2)

It can be shown that only the component of �fB

(
�Q
)

perpendicular to �Q contributes to the scattering [12]:

�fB⊥ = �q × �fB × �q = �fB −
(
�fB · �q

)
�q (3)

with �q =
�Q
|Q| being the unit vector along the �Q direction.

The total scattering cross section writes:

dσ
dΩ

∝
∣∣∣∣ fN

(
�Q
)
+ �fB⊥

(
�Q
)
· �σ

∣∣∣∣2 (4)

where we recall that �σ is the neutron spin operator.

In the case of polarized neutrons with polarization analysis, it is possible to measure 4 quantities corre-

sponding to “Non Spin Flip” (NSF, (++) or (- -)) and “Spin Flip” (SF, (+-) or (-+)) scattering as recently

experimentally put into evidence [13, 14]:

dσ++
dΩ =

∣∣∣∣ fN( �Q) + fB⊥z′ (
�Q)

∣∣∣∣2
dσ−−
dΩ =

∣∣∣∣ fN( �Q) − fB⊥z′ (
�Q)

∣∣∣∣2
dσ+−
dΩ =

∣∣∣∣ fB⊥x′ (
�Q) − i fB⊥y′ (

�Q)
∣∣∣∣2

dσ−+
dΩ =

∣∣∣∣ fB⊥x′ (
�Q) + i fB⊥y′ (

�Q)
∣∣∣∣2

(5)
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where fB⊥x′ (
�Q), fB⊥y′ (

�Q) and fB⊥z′ (
�Q) refer to the component of �fB⊥

(
�Q
)

along the (Ox′), (Oy′) and (Oz′)
axis respectively, where (Oz′) is the quantification axis of the neutron spin defined by the applied magnetic

field. If the induction distribution is even around the (Ox′) and (Oy′) axes, the Fourier transforms fB⊥x′ (
�Q)

and fB⊥y′ (
�Q) are real so that the two spin-flip cross sections are equal. These formulae are derived from Eq.

4 using the Pauli matrices [15].

In the case of polarized neutrons without polarization analysis which in practice is the situation encoun-

tered in most PSANS experiments, the two scattering intensities which can be measured are: until now, 2

quantities can be measured:

dσ+
dΩ =

dσ++
dΩ +

dσ+−
dΩ =

∣∣∣∣ fN( �Q) + fB⊥z′ (
�Q)

∣∣∣∣2 +
∣∣∣∣ fB⊥x′ (

�Q) + i fB⊥y′ (
�Q)

∣∣∣∣2
dσ−
dΩ =

dσ−−
dΩ +

dσ−+
dΩ =

∣∣∣∣ fN( �Q) − fB⊥z′ (
�Q)

∣∣∣∣2 +
∣∣∣∣ fB⊥x′ (

�Q) − i fB⊥y′ (
�Q)

∣∣∣∣2
(6)

For non polarized neutron scattering:

dσ
dΩ =

dσ+
dΩ +

dσ−
dΩ =

∣∣∣∣ fN

(
�Q
)∣∣∣∣2 +

∣∣∣∣ �fB⊥( �Q)
∣∣∣∣2 (7)

2.2. Practical calculation of the nuclear and magnetic form factors

We shall now discuss how to calculate in practice the quantity �fB⊥( �Q). A first approach consists in

assuming an a priori knowledge of the magnetization distribution in the particle (for example, �M can be as-

sumed to be homogeneous). Under this assumption, the induction field distribution
−→
B

(
�r
)

can be calculated

using standard electromagnetic softwares. In the case of objects with an axis of revolution, we suggest the

use of the Femm package [16]. The package provides various tools (scripting langage LUA, Octavefemm
interface to Octave or Matlab, Mathfemm interface to Mathematica) which allows extracting the induction

field distribution
−→
B

(
�r
)

from the electromagnetic calculation.

A more general approach, with no assumptions on the magnetization distribution in the nanoparticle

calculates the magnetization distribution in the particle under a given applied magnetic field. Several mi-

cromagnetic packages have become available for non expert users during the last few years (OOMMF [17],

MagPar [18], Nmag [19]). We have used the Nmag package since it is based on finite elements and is thus

especially well suited to the types of particles encountered in SANS scattering (spheres, cylinders, disks).

The procedure consists in defining an object geometry and discretization using the Netgen mesher [20] (Fig-

ure 3). The 3D magnetic moments distribution
−→
M

(
�r
)

in the object can then be calculated using the Nmag
package (Figure 3e).

In order to perform a numerical calculation of the magnetic form factors of such magnetic objects, a

volume of space V containing the objects is defined. Its dimensions Lx × Ly × Lz are such that this volume

is significantly large than the nanoobjects (3-10 times). From the magnetization distribution
−→
M(�r) in the

nano-object, the induction field
−→
B

(
�r
)

can be calculated in the whole volume V . In practice, this induction

field
−→
B

(
�r
)

is calculated on a regular grid and mapped on a 3D matrix of size (nx, ny, nz). Python scripts

performing this task are available on the LLB Website [21]. This induction distribution is then exported

into octave or matlab in order to perform numerical calculations of the magnetic form factor �fB( �Q) using

equations (2) and (3). The corresponding scripts are freely available at [21]. One obtains a set of three 3D

matrices
{
fBx( �Q), fBy( �Q), fBz( �Q)

}
describing the 3 components of the magnetic form factor in the reciprocal

space. The reciprocal space is mapped with a sampling given by ΔQ = 2π
Li

and the useful accessible Q-range

goes from Qmin =
2π
Li

to about Qmax
i ∼ 0.5 × 2π

Li
ni (e.g. for Li = 100nm and ni = 100, 0.06 < Q < 3nm−1 )

The Fourier transforms of the induction field are performed using a FFT algorithm with the condition

that the dimensions (nx, ny, nz) of the matrices are powers of 2. Since we are dealing with 3D matrices, the

memory requirements diverge rather quickly as the matrices sizes increase. A matrix size of 128×128×128

provides both a reasonable memory footprint (32 MBytes / matrix) and fast calculations times (50ms per
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Figure 2. The different scattering that will be considered. The neutron beam is incident along the (OZ) direction. (XY) defines the

scattering plane. The longitudinal (1-2) and transverse (3-4) scattering geometries correspond to a magnetic field applied along (OZ)

and (OX) respectively. The scattering object can be oriented with its easy axis parallel (1-4) or perpendicular (2-3) to the applied field.

FFT on a standard desktop computer). Such a sampling rate provides accurate Fourier transforms in the

reciprocal space over 2 orders of magnitude (see Figure 5 for example). We found that a volume of space V
about 6 times larger (i.e. Lx = 6D for a sphere of diameter D) than the studied object provided good results

in the Q range of interest.

We now define the scattering geometries that will be considered in the actual numerical calculations

presented in the next section. We first underline that in the general case of polarized neutron scattering

on anisotropic particles, it is necessary to define 3 axis systems. The first one (x, y, z) is attached to the

studied nano-objects. The second one (X,Y,Z) describes the spectrometer geometry. The third one (x′, y′, z′)
describes the orientation of the quantification axis (defined by the applied magnetic field along z′). In order

to describe a scattering experiment, it is necessary to define the relative orientations of these 3 sets of axis.

In order to simplify the presentation and to comply with experimental conditions, we consider a scat-

tering plane (QX = Q cosα, QY = Q sinα) corresponding to the 2D detector plane of a SANS spectrometer

(XOY). For each scattering direction α in the scattering plane, the perpendicular components of the magnetic

form factor �f⊥ (θ, r) can be calculated using equation (3):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
fB⊥X

fB⊥Y

fB⊥Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

fBX − ( fBX cosα + fBY sinα) cosα
fBY − ( fBX cosα + fBY sinα) sinα

fBZ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

Note that the above formula is only valid in the (QX , QY ) scattering plane. In the practical procedure,

the magnetic induction distribution is calculated in the (xyz) reference frame where (Oz) is the revolution

axis of the object. The examples proposed in [21] follow this convention. We define ω as the rotation angle

of the object around the (OY) axis. With these conventions, for ω = 0, a cylinder is aligned along the (OZ)

axis. For ω = 90°, a cylinder is aligned along the (OX) axis. The distribution
−→
B

(
�r
)

XYZ in the spectrometer

axis is obtained by a rotation ω :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
B⊥X

B⊥Y

B⊥Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosω 0 sinω
0 1 0

−sinω 0 cosω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B⊥x

B⊥x

B⊥z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (9)

For the sake of illustration, we shall not include both the nuclear scattering and the magnetic scattering

in the calculations. Even though this is not realistic in a general scattering experiment where the nuclear

contribution is usually large, such situations can be encountered in SANS experiments: the nuclear contrast

of cobalt particles can easily be matched by using an appropriate deuterated solvent [7, 8]; ferromagnetic

particles in a paramagnetic matrix also allow to extinguish the nuclear contrast [11]. Ignoring the nuclear

scattering effects will allow us to focus on the magnetic effects which are the scope of this communication.
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Figure 3. Typical meshes obtained from the Netgen mesher for the different nano-objects: (a) a sphere of diameter D = 10 nm, (b)

a flat disk of diameter D = 20 nm and height h = 2.5 nm, (c) a cylinder of diameter D = 10 nm and length L = 50 nm, (d) a disk

of diameter D = 50 nm and height h = 5 nm. Note that the distance between two nodes is around 1 nm. (e) Maps of the magnetic

moments distribution at remanence for the disk defined in (d). The colors encode the y-component of the magnetization (my = My/M)

in the profile view (left) and z-component of the magnetization (mz = Mz/M) viewed from the top (right).

In the following, we shall different relative orientations of the applied magnetic field direction with

respect to the scattering plane:

1. Longitudinal scattering (H ‖ OZ) . Equation (5) becomes:

dσ++
dΩ =

dσ−−
dΩ =

∣∣∣∣ fB⊥Z ( �Q)
∣∣∣∣2

dσ+−
dΩ =

dσ−+
dΩ =

∣∣∣∣ fB⊥X ( �Q) ∓ i fB⊥Y ( �Q)
∣∣∣∣2

(10)

2. Transverse scattering (H ‖ OX) . Equation (5) becomes:

dσ++
dΩ =

dσ−−
dΩ =

∣∣∣∣ fB⊥X ( �Q)
∣∣∣∣2

dσ+−
dΩ =

dσ−+
dΩ =

∣∣∣∣ fB⊥Y ( �Q) ∓ i fB⊥Z ( �Q)
∣∣∣∣2

(11)

Note that even though the above formulae are very similar, the key parameter is the distribution fB⊥ ( �Q)

with respect to the scattering plane. The scattering geometries (1)-(4) presented on Figure 2 will lead to

qualitatively different results which are discussed in the next section.

3. Model calculations

In this section we will present the calculation of the magnetic form factors of different types of nano-

objects: (a) a sphere of diameter D = 10 nm, (b) a flat disk of diameter D = 10 nm and height h = 2.5 nm and

(c) a cylinder of diameter D = 10 nm and length L = 50 nm. These objects are presented in Figure 3. The

magnetic parameters used are the following: magnetization saturation of cobalt M = 1.4×106 A.m−1(≡1.76

T); exchange stiffness A = 1.2×1011 J.m−1. Moreover, a uniaxial magnetocrystalline anisotropy K = 7×105

J.m−3 along z was considered in the case of the flat disk (Figure 3b) in order to force the magnetic moments

to be normal to the disk surface. In a first step, the remanent configuration was determined for all the

objects. It reveals a rather homogeneous distribution of the magnetic moments along the Oz direction for

objects (a), (b) and (c). This is due to the fact that these objects are to the first order approximations of

elliptical objects in which the demagnetizing field in homogeneous. For simplicity, only nano-objects with a

quasi uniform magnetic moments distribution have been considered. However, more complex distributions

can be considered as it is highlight for a disk of diameter D = 50 nm and height h = 5 nm within which a

vortex state appears (see Figure 3e).
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Figure 4. Numerically calculated form factors (circles) and comparison with analytical formulas (continuous lines). a), b) and c)

correspond to 3D form factors calculated for the sphere D = 10, the cylinder (D = 10 nm, L = 50 nm), the flat disk (D = 10 nm,

h = 2.5 nm) and 1D cuts of the form factor in the reciprocal space in specific directions.

We perform numerical calculation of the 3D nuclear form factors so as to be able to compare the results

with analytical formulae and validate the numerical procedure. As a next step, we perform calculations of

the magnetic form factors where we illustrate the contributions of the demagnetizing and the dipolar fields.

3.1. Validation of the numerical procedure: application to the calculation of nuclear form factors

Although this paper is devoted to the magnetic form factors of nano-objects, we have also numerically

calculated the 3D nuclear form factor of these objects in order to check the applicability of our numerical

algorithm. When calculating the 3D nuclear form factor, the volume of space V containing the object is

mapped onto a 3D matrix Gx,y,z describing the object geometry in such a way that Gx,y,z = 1 for (x, y, z)

inside the object and Gx,y,z = 0 for (x, y, z) outside the object.

Figures 4a-b-c present the 3D nuclear form factors calculated for the sphere (D = 10 nm), the flat disk

(D = 10 nm, h = 2.5nm) and the cylinder (D = 10 nm, L = 50 nm) defined in Figure 3. The scattering

is isotropic in the sphere case and anisotropic in the other cases. The nuclear form factors of these simple

objects are well known and can be analytically calculated [22]. We can thus compare our numerical results

with the analytical formulae. Figures 4d-e-f compare the numerical and analytical calculations along the

main directions in the reciprocal space (in nm−1) for the different objects. The agreement is satisfactory for

all the objects which proves the applicability of our numerical calculations.

These results show that it is possible to calculate rather accurately, in a single shot, the form factor in

a Q-range extending over 2 decades with scattering intensities extending over 3 decades. If one would be

interested in a different Q-range, it is necessary to resize the V box around the object. As Qmin =
2π
Li

, in

order to probe smaller Q values, the size Li of the box should be increased As Qmax
i ∼ 0.5× 2π

Li
ni, in order to

probe larger Q values, either the size Li of the box should be decreased of the number of mapping points ni

should be increased. This is similar to a real SANS experiment where the measuring conditions are changed

in order to cover a wider Q-range.

In the following we shall however restrict ourselves to a V box 6 × 6 × 6 times the size of the object,

which provides an appropriate sampling in the Q space for our demonstrations.
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Figure 5. Longitudinal scattering on 3 types of objects (sphere, cylinder and disk) magnetized along the applied field. a), b), and c)

Induction distribution in (YZ) plane for a sphere, a cylinder and a disk magnetized along the Z direction. d), e) and f) Scattering cross

sections of different magnetic contributions: the magnetization only ( �M(�r)), the internal magnetic induction (�Bint.(�r)), the dipolar field

created by the magnetic moments outside the object (�Bext.(�r)) and the whole magnetic induction (�Btot.(�r) = �Bint.(�r) + �Bext.(�r)).

3.2. Case of magnetic objects

The same calculation procedure was applied to the case of magnetic objects. Figure 5 presents the

calculation of the magnetic form factors in the case of the 3 canonical geometries (sphere, disk and cylinder).

A first reference calculation was performed by calculating the form factor of an homogeneously magnetized

sample and for which only the magnetization inside the sample was considered (blue lines on Figure 5).

A second calculation was performed where the form factor of the induction map was also included. The

induction map is plotted on Figure 5 a-c. We considered the induction in the sample given by �Bint.(�r) =

μ0

(
�M(�r) + �Hd(�r)

)
where �Hd(�r) is the demagnetizing fields and the stray fields outside the sample (�Bext.(�r)).

The contribution of these inductions distributions was calculated separately (black and green curves). The

sum of these contributions �Btot.(�r) overlaps with the form factor simply obtained from the magnetization

distribution (see figure 5d-e-f). The deviation observed at low Q are numerical artifacts due to the fact

that the stray fields expand beyond the calculation box. This numerically demonstrates that the magnetic

form factor can be obtained by considering the magnetization distribution without taking into account the

demagnetization fields and the stray fields outside the sample.

4. Conclusion

We have developed numerical tools [21] which permits the calculations of the structural and magnetic

form factor of nano-objects with complex geometrical shapes. Such calculations were until recently limited

due to the extensive memory usage of 3 dimensional FFT calculations. As Polarized SANS spectrometers

are becoming widely available the problem of quantitatively processing the data obtained on complex mag-

netic nano-systems will arise. This first step will allow experimentalists to compare their measurements with

realistic models of the magnetization in their nano-systems. In the future, with the widespread availability

of systems with tens of gigabytes of memory, one may consider applying similar methods for the numerical

calculation of complex structure factors.
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