71 research outputs found

    Memory Function and the Hippocampus

    Get PDF
    There has been a long tradition in memory research of adopting the view of a vital role of the medial temporal lobe and especially the hippocampus in declarative memory. Despite the broad support for this notion, there is an ongoing debate about what computations are performed by the different substructures. The present chapter summarizes several accounts of hippocampal functions in terms of the cognitive processes subserved by these structures, the information processed, and the underlying neural operations. Firstly, the value of the distinction between recollection and familiarity for the understanding of the role the hippocampus plays in memory is discussed. Then multiple lines of evidence for the role of the hippocampus in memory are considered. Cumulating evidence suggests that the hippocampus fosters the binding of disparate cortical representations of items and their spatiotemporal context into a coherent representation by means of a sparse conjunctive neural coding. This association of item and context will then lead to the phenomenological experience of recollection. In contrast, surrounding cortical areas have broader neural coding that provide a scalar signal of the similarity between two inputs (e.g. between the encoding and the retrieval). By this they form the basis of a feeling of familiarity, but also might encode the commonalities between these different inputs. However, a more complete picture of the importance of the hippocampus for declarative memories can only be drawn when the interactions of the medial temporal lobe with other brain areas are also taken into account

    The impact of auditory working memory training on the fronto-parietal working memory network

    Get PDF
    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously

    Neural Correlates of Recognition Memory in Children with Febrile Seizures: Evidence from Functional Magnetic Resonance Imaging

    Get PDF
    Febrile seizures (FS) are assumed to not have adverse long-term effects on cognitive development. Nevertheless, FS are often associated with hippocampal sclerosis which can imply episodic memory deficits. This interrelation has hardly been studied so far. In the current study 13 children who had suffered from FS during infancy and 14 control children (7 to 9-years-old) were examined for episodic and semantic memory with standardized neuropsychological tests. Furthermore, using functional magnetic resonance imaging (fMRI) we studied neuronal activation while the children performed a continuous recognition memory task. The analysis of the behavioral data of the neuropsychological tests and the recognition memory experiment did not reveal any between-group differences in memory performance. Consistent with other studies fMRI revealed repetition enhancement effects for both groups in a variety of brain regions (e.g., right middle frontal gyrus, left parahippocampal gyrus) and a repetition suppression effect in the right superior temporal gyrus. Different neural activation patterns between both groups were obtained selectively within the right supramarginal gyrus (BA 40). In the control group correct rejections of new items were associated with stronger activation than correctly identified old items (HITs) whereas in the FS group no difference occurred. On the background that the right supramarginal gyrus is assumed to mediate a top-down process to internally direct attention toward recollected information, the results could indicate that control children used strategic recollection in order to reject new items (recall-to-reject). In contrast, the missing effect in the FS group could reflect a lack of strategy use, possibly due to impaired recollective processing. This study demonstrates that FS, even with mainly benign courses, can be accompanied by selective modifications in the neural structures underlying recognition memory

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Brand Loyalty Experiment

    No full text
    In this study we use an experimental approach to explore how choices between luxury and budget brands are affected by loyalty rewards in a probabilistic brand-selection task. Separately, we measure participants’ narcissistic traits to understand if this influences their brand choices. From this we can infer whether consumer or brand influence the effectiveness of brands’ loyalty reward points

    Memory function and the hippocampus

    No full text
    There has been a long tradition in memory research of adopting the view of a vital role of the medial temporal lobe and especially the hippocampus in declarative memory. Despite the broad support for this notion, there is an ongoing debate about what computations are performed by the different substructures. The present chapter summarizes several accounts of hippocampal functions in terms of the cognitive processes subserved by these structures, the information processed, and the underlying neural operations. Firstly, the value of the distinction between recollection and familiarity for the understanding of the role the hippocampus plays in memory is discussed. Then multiple lines of evidence for the role of the hippocampus in memory are considered. Cumulating evidence suggests that the hippocampus fosters the binding of disparate cortical representations of items and their spatiotemporal context into a coherent representation by means of a sparse conjunctive neural coding. This association of item and context will then lead to the phenomenological experience of recollection. In contrast, surrounding cortical areas have broader neural coding that provide a scalar signal of the similarity between two inputs (e.g. between the encoding and the retrieval). By this they form the basis of a feeling of familiarity, but also might encode the commonalities between these different inputs. However, a more complete picture of the importance of the hippocampus for declarative memories can only be drawn when the interactions of the medial temporal lobe with other brain areas are also taken into account
    corecore