109 research outputs found

    Endothelial Function Assessed by Digital Volume Plethysmography Predicts the Development and Progression of Type 2 Diabetes Mellitus

    Get PDF
    Background Endothelial dysfunction is a consequence of type 2 diabetes mellitus, but it is unclear whether endothelial dysfunction of conductance versus resistance vessels may also precede type 2 diabetes mellitus development. Methods and Results In a population‐based cohort of 15 010 individuals from the GHS (Gutenberg Health Study) (aged 35–74 years at enrollment in 2007–2012), we identified 1610 cases of incident pre–diabetes mellitus and 386 cases of incident type 2 diabetes mellitus by hemoglobin A1c (HbA1c) and/or medical history between 2012 and 2017. Endothelial function of conductance and resistance vessels was measured by flow‐mediated dilation and digital volume plethysmography–derived reactive hyperemia index, respectively. Multivariable regression modeling was used to estimate β coefficients of HbA1c levels at follow‐up and relative risks of incident (pre–)diabetes mellitus. Reactive hyperemia index was independently associated with HbA1c after multivariable adjustment for baseline HbA1c, sex, age, socioeconomic status, arterial hypertension, waist/height ratio, pack‐years of smoking, non–high‐density lipoprotein/high‐density lipoprotein ratio, physical activity, family history of myocardial infarction/stroke, prevalent cardiovascular disease, medication use, and C‐reactive protein (β=−0.020; P=0.0029). The adjusted relative risk per SD decline in reactive hyperemia index was 1.08 (95% CI, 1.02–1.15; P=0.012) for incident pre–diabetes mellitus and 1.16 (95% CI, 1.01–1.34; P=0.041) for incident type 2 diabetes mellitus. Flow‐mediated dilation independently increased the relative risk for developing pre–diabetes mellitus by 8% (95% CI, 1.02–1.14; P=0.012), but it was not independently associated with incident type 2 diabetes mellitus (relative risk, 1.01; 95% CI, 0.86–1.19; P=0.92) and with HbA1c (β=−0.003; P=0.59). Conclusions Endothelial dysfunction of resistance rather than conductance vessels may precede the development of (pre–)diabetes mellitus. Assessment of endothelial function by digital volume plethysmography may help to identify subjects at risk for development of type 2 diabetes mellitus

    «Малобюджетний» маркетинг

    Get PDF
    В умовах сьогоднішньої економічної кризи, яка зачепила всі вітчизняні підприємства, та постійного зниження української національної валюти актуальними стають питання пошуку способів економії коштів. Вирішенням таких проблем може стати «мало бюджетний» маркетинг, який допоможе розвиватися підприємству з використанням мінімальної кількості ресурсів. «Малобюджетний» маркетинг – це маркетингові інструменти залучення й утримання клієнтів, які припускають мінімальні витрати, а іноді можна взагалі обійтися без бюджету

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    2-Acetyl­pyridinium bromanilate

    Get PDF
    In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 −, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing

    The cardiac troponin C mutation Leu29Gln found in a patient with hypertrophic cardiomyopathy does not alter contractile parameters in skinned murine myocardium

    Get PDF
    The present study investigates the effects of the first mutation of troponin C (hcTnCL29Q) found in a patient with hypertrophic cardiomyopathy (HCM) on force–pCa relations and the interplay with phosphorylation of sarcomeric PKA substrates. In triton-skinned murine cardiac fibers, the endogenous mcTnC was extracted and the fibers were subsequently reconstituted with recombinant wild-type and mutant hcTnC. Force–pCa relations of preparations containing hcTnCL29Q or hcTnCWT were similar. Incubation of fibers reconstituted with the recombinant proteins with phosphatase to dephosphorylate sarcomeric PKA substrates induced an increase in Ca2+ sensitivity, slightly more pronounced (0.04 pCa units) in hcTnCL29Q-containing fibers. Incubation of the dephosphorylated fibers with PKA induced significant rightward shifts of force–pCa relations of similar magnitude with both, hcTnCL29Q and hcTnCWT. No significant effects of hcTnCL29Q on the velocity of unloaded shortening were observed. In conclusion, no major differences in contractile parameters of preparations containing hcTnCL29Q compared to hcTnCWT were observed. Therefore, it appears unlikely that hcTnCL29Q induces the development of HCM by affecting the regulation of Ca2+-activated force and interference with PKA-mediated modulation of the Ca2+ sensitivity of contraction

    Proton Transfer, Hydrogen Bonding, and Disorder: Nitrogen Near-Edge X-ray Absorption Fine Structure and X-ray Photoelectron Spectroscopy of Bipyridine-Acid Salts and Co-crystals

    Get PDF
    The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to Brønsted donation and the protonation state of nitrogen in the solid state is investigated through a series of multicomponent bipyridine–acid systems alongside X-ray photoelectron spectroscopy (XPS) data. A large shift to high energy occurs for the 1s → 1π* resonance in the nitrogen K-edge NEXAFS with proton transfer from the acid to the bipyridine base molecule and allows assignment as a salt (C═NH+), with the peak ratio providing the stoichiometry of the types of nitrogen species present. A corresponding binding energy shift for C═NH+ is observed in the nitrogen XPS, clearly identifying protonation and formation of a salt. The similar magnitude shifts observed with both techniques relative to the unprotonated nitrogen of co-crystals (C═N) suggest that the chemical state (initial-state) effects dominate. Results from both techniques reveal the sensitivity to identify proton transfer, hydrogen bond disorder, and even the potential to distinguish variations in hydrogen bond length to nitrogen

    Overview of ASDEX Upgrade Results

    Get PDF

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
    corecore