283 research outputs found

    A sensitivity study of parameters affecting residual stress predictions in finite element modelling of the inertia friction welding process

    Get PDF
    This study presents a finite element (FE) model capable of predicting the final residual stress field in an inertia friction welded component of a CrMoV steel considering the elastic and inelastic components of strain resulting from mechanical deformation, temperature changes in the material and volumetric changes associated with phase transformations. The material database was improved to include the properties of the child phases involved in the polymorphic transformation during inertia friction welding (IFW) of CrMoV steels, i.e. austenite and quenched martensite, taking different approaches based on existent experimental data from the parent phase (tempered martensite) and material characterisation of the heat affected zone (HAZ) in weld trials. This is the only FE model available in the literature that takes into consideration the effects induced by the transformation strain component of multiple phases in the total strain generated during IFW. Several simulations were run using this FE model in order to address for the first time the sensitivity of the final residual stress field to the individual effects of the microstructural changes, the interrelationship of multiple phases, and to different processing parameters such as the die geometry, clamping history and cooling rates

    Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation

    Get PDF
    Changes in heat transport associated with fluctuations in the strength of the Atlantic meridional overturning circulation (AMOC) are widely considered to affect the position of the Intertropical Convergence Zone (ITCZ), but the temporal immediacy of this teleconnection has to date not been resolved. Based on a high-resolution marine sediment sequence over the last deglaciation, we provide evidence for a synchronous and near-linear link between changes in the Atlantic interhemispheric sea surface temperature difference and continental precipitation over northeast Brazil. The tight coupling between AMOC strength, sea surface temperature difference, and precipitation changes over northeast Brazil unambiguously points to a rapid and proportional adjustment of the ITCZ location to past changes in the Atlantic meridional heat transport

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Reversed flow of Atlantic deep water during the Last Glacial Maximum

    Get PDF
    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies1, 2 and recent model simulations3 indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic 231Pa/230Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength4, 5, 6. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in 231Pa/230Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of 231Pa/230Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC—with a prominent southerly flow of deep waters originating in the North Atlantic—arose only during the Holocene epoch

    Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in

    Get PDF
    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement

    Chemical PARP Inhibition Enhances Growth of Arabidopsis and Reduces Anthocyanin Accumulation and the Activation of Stress Protective Mechanisms

    Get PDF
    Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity

    Biofeedback and progressive relaxation treatment of sleep-onset insomnia

    Full text link
    Previous research suggests that self-defined insomniacs are distinguished from normals by high levels of anxiety and physiological arousal, which might be mitigated by muscle relaxation. This study assessed the relative effects of frontal EMG biofeedback, progressive relaxation, and a placebo set of “relaxation” exercises on the sleep of 18 onset insomniacs. Each subject was trained in one of these three methods for six half-hour sessions and slept in the laboratory for two consecutive nights before and after training. The experimental groups demonstrated significant decreases in physiological activity during training while changes in the control group were minimal. Reductions in sleep-onset time were: biofeedback group, 29.66 minutes; progressive relaxation group, 22.92 minutes; control group, 2.79 minutes. The experimental groups improved significantly ( p<.05 ) more than the control group, but did not differ from each other. No significant relationships between physiological levels and sleep-onset time were found, which suggests that muscle relaxation alone was not responsible for subjects' improvements. Since 20 minutes of daily practice were required to achieve an approximate 30-minute decrease in sleep-onset time, the practical utility of the methods is questioned.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44085/1/10484_2005_Article_BF01001167.pd

    Oral contraceptive pill use and the susceptibility to markers of exercise-induced muscle damage

    Get PDF
    © 2017, The Author(s). Purpose: Firstly, to establish whether oral contraceptive pill (OCP) users are more susceptible to muscle damage compared to non-users, and secondly, to establish whether differences can be attributed to differences in patella tendon properties. Methods: Nine female OCP users and 9 female non-users participated in the investigation. Combining dynamometry, electromyography and ultrasonography, patella tendon properties and vastus lateralis architectural properties were measured pre and during the first of 6 sets of 12 maximal voluntary eccentric knee extensions. Serum oestrogen levels were measured on the 7th day of the pill cycle and the 14th day of menstrual cycle in OCP users and non-users, respectively. Maximal voluntary isometric knee extension torque loss, creatine kinase and muscle soreness were measured 48 h pre-damage, post-damage, and 48, 96 and 168 h post-damage. Results: Oestrogen levels were significantly lower in OCP users compared to non-users (209 ± 115 and 433 ± 147 pg/ml, respectively, p = 0.004). Proposed determinants of muscle damage, patella tendon stiffness and maximal eccentric torque did not differ between OCP users and non-users. The change in creatine kinase from pre to peak was significantly higher in OCP users compared to non-users (962 ± 968 and 386 ± 474 Ul, respectively, p = 0.016). There were no other differences in markers of muscle damage. Conclusion: Although our findings suggest that, when compared to non-users, the OCP may augment the creatine kinase response following eccentric exercise, it does not increase the susceptibility to any other markers of muscle damage
    corecore