33 research outputs found

    Obscured and unobscured AGN populations in a hard-X-ray selected sample of the XMDS survey

    Get PDF
    Our goal is to probe the populations of obscured and unobscured AGN investigating their optical-IR and X-ray properties as a function of X-ray flux, luminosity and redshift within a hard X-ray selected sample of 136 X-ray sources in the XMM Medium Deep Survey (XMDS) with wide multiwavelength coverage. The XMDS area is covered with optical photometry from the VVDS and CFHTLS surveys and infrared Spitzer data. Based on the X-ray luminosity and X-ray to optical ratio, 132 sources are likely AGN, of which 122 have unambiguous optical - IR identification. The observed optical and IR spectral energy distributions of sources are fitted with AGN/galaxy templates in order to classify them and compute photometric redshifts. 70% of the AGN are fitted by a type 2 AGN or a star forming galaxy template and are grouped together in a single class of ``optically obscured'' AGN. They have ``red'' optical colors and generally show significant X-ray absorption from X-ray spectra or hardness ratios (NH>1022_H > 10^{22} cm2^{-2}). Sources with SEDs typical of type 1 AGN have ``blue'' optical colors and exhibit X-ray absorption in about 30% of cases. We performed a stacking analysis for obscured and type 1 AGN. The stacked X-ray spectrum of obscured AGN is flatter than that of type 1 AGN and has an average spectral slope of Gamma = 1.6. The subsample of objects fitted by a galaxy template has an even harder stacked spectrum, with Gamma = 1.2 - 1.3. The obscured fraction is larger at lower fluxes, lower redshifts and lower luminosities. X-ray absorption is less common than ``optical'' obscuration and its incidence is nearly constant with redshift and luminosity. This implies that X-ray absorption is not necessarily related to optical obscuration.Comment: 33 pages, 21 figures, accepted for publication in A&

    The XMM-LSS Survey: A well controlled X-ray cluster sample over the D1 CFHTLS area

    Full text link
    We present the XMM-LSS cluster catalogue corresponding to the CFHTLS D1 area. The list contains 13 spectroscopically confirmed, X-ray selected galaxy clusters over 0.8 deg2 to a redshift of unity and so constitutes the highest density sample of clusters to date. Cluster X-ray bolometric luminosities range from 0.03 to 5x10^{44} erg/s. In this study, we describe our catalogue construction procedure: from the detection of X-ray cluster candidates to the compilation of a spectroscopically confirmed cluster sample with an explicit selection function. The procedure further provides basic X-ray products such as cluster temperature, flux and luminosity. We detected slightly more clusters with a (0.5-2.0 keV) X-ray fluxes of >2x10^{-14} erg/s/cm^{-2} than we expected based on expectations from deep ROSAT surveys. We also present the Luminosity-Temperature relation for our 9 brightest objects possessing a reliable temperature determination. The slope is in good agreement with the local relation, yet compatible with a luminosity enhancement for the 0.15 < z< 0.35 objects having 1 < T < 2 keV, a population that the XMM-LSS is identifying systematically for the first time. The present study permits the compilation of cluster samples from XMM images whose selection biases are understood. This allows, in addition to studies of large-scale structure, the systematic investigation of cluster scaling law evolution, especially for low mass X-ray groups which constitute the bulk of our observed cluster population. All cluster ancillary data (images, profiles, spectra) are made available in electronic form via the XMM-LSS cluster database.Comment: 12 pages 5 figures, MNRAS accepted. The paper with full resolution cluster images is available at http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/rel_pub_e.htm

    A multi-wavelength survey of AGN in the XMM-LSS field: I. Quasar selection via the KX technique

    Get PDF
    AIMS: We present a sample of candidate quasars selected using the KX-technique. The data cover 0.68 deg^2 of the X-ray Multi-Mirror (XMM) Large-Scale Structure (LSS) survey area where overlapping multi-wavelength imaging data permits an investigation of the physical nature of selected sources. METHODS: The KX method identifies quasars on the basis of their optical (R and z') to near-infrared (Ks) photometry and point-like morphology. We combine these data with optical (u*,g'r',i',z') and mid-infrared (3.6-24 micron) wavebands to reconstruct the spectral energy distributions (SEDs) of candidate quasars. RESULTS: Of 93 sources selected as candidate quasars by the KX method, 25 are classified as quasars by the subsequent SED analysis. Spectroscopic observations are available for 12/25 of these sources and confirm the quasar hypothesis in each case. Even more, 90% of the SED-classified quasars show X-ray emission, a property not shared by any of the false candidates in the KX-selected sample. Applying a photometric redshift analysis to the sources without spectroscopy indicates that the 25 sources classified as quasars occupy the interval 0.7 < z < 2.5. The remaining 68/93 sources are classified as stars and unresolved galaxies.Comment: 13 pages, 9 figures, A&A 494, p. 579-589. Replaced with published version. Fig. 9 in first astro-ph submission has been update

    The XMM-LSS survey: The XMDS/VVDS 4 sigma catalogue

    Full text link
    We present a first catalogue of X-ray sources resulting from the central area of the XMM-LSS (Large Scale Structure survey). We describe the reduction procedures and the database tools we developed and used to derive a well defined catalogue of X-ray sources. The present catalogue is limited to a sub-sample of 286 sources detected at 4 sigma in the 1 deg^2 area covered by the photometric VVDS (VIRMOS VLT Deep Survey), which allows us to provide optical and radio identifications. We also discuss the X-ray properties of a larger X-ray sample of 536 sources detected at > 4 sigma in the full 3 deg^2 area of the XMM Medium Deep Survey (XMDS) independently of the optical identification. We also derive the logN-logS relationship for a sample of more than one thousand sources that we discuss in the context of other surveys at similar fluxes.Comment: 15+6 pages, 12 figures, accepted for publication in Astronomy & Astrophysics The online catalogue announced in the paper will be accessible in about 2 weeks due to technical reasons Fig. 2 replaced with a low resolution on

    Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey

    Get PDF
    We present the spectral energy distributions (SEDs) of a hard X-ray selected sample. The sample contains 136 sources with F(2-10 keV)>10^-14 erg/cm^2/s and 132 are AGNs. The sources are detected in a 1 square degree area of the XMM-Newton-Medium Deep Survey where optical data from the VVDS, CFHTLS surveys, and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with sigma(1+z)=0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17+9-6% of AGNs shows star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33+6-1%) and AGN2 (50+6-11). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the IR SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L(3-20micron)/Lcorr(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E>10 keV are too faint to be detected even in the deepest current radio surveys.Comment: Accepted for publication in Ap

    The XMM-LSS catalogue: X-ray sources and associated optical data. Version I

    Full text link
    Following the presentation of the XMM-LSS X-ray source detection package by Pacaud et al., we provide the source lists for the first 5.5 surveyed square degrees. The catalogues pertain to the [0.5-2] and [2-10] keV bands and contain in total 3385 point-like or extended sources above a detection likelihood of 15 in either band. The agreement with deep logN-logS is excellent. The main parameters considered are position, countrate, source extent with associated likelihood values. A set of additional quantities such as astrometric corrections and fluxes are further calculated while errors on the position and countrate are deduced from simulations. We describe the construction of the band-merged catalogue allowing rapid sub-sample selection and easy cross-correlation with external multi-wavelength catalogues. A small optical CFHTLS multi-band subset of objects is associated wich each source along with an X-ray/optical overlay. We make the full X-ray images available in FITS format. The data are available at CDS and, in a more extended form, at the Milan XMM-LSS database.Comment: 13 pages, 7 figures and 11 tables (fig. 1 and 6 are enclosed in reduced resolution), MNRAS Latex, accepted by MNRA

    The XMM Large Scale Structure Survey: Properties and Two-Point Angular Correlations of Point-like Sources

    Get PDF
    We analyze X-ray sources detected over 4.2 pseudo-contiguous sq. deg. in the 0.5-2 keV and 2-10 keV bands down to fluxes of 2x10^{-15} and 8x10^{-15} erg/s/cm^2 respectively, as part of the XMM Large Scale Structure Survey. The logN-logS in both bands shows a steep slope at bright fluxes, but agrees well with other determinations below ~2x10^{-14} erg/s/cm^2. The detected sources resolve close to 30 per cent of the X-ray background in the 2-10 keV band. We study the two-point angular clustering of point sources using nearest neighbours and correlation function statistics and find a weak, positive signal for ~1130 sources in the 0.5-2 keV band, but no correlation for ~400 sources in the 2-10 keV band below scales of 100 arcsec. A sub-sample of ~200 faint sources with hard X-ray count ratios, that is likely to be dominated by obscured AGN, does show a positive signal with the data allowing for a large scaling of the angular correlation length, but only at the ~2 (3) sigma level, based on re-sampling (Poisson) statistics. We discuss possible implications and emphasize the importance of wider, complete surveys in order to fully understand the large scale structure of the X-ray sky.Comment: A&A in press; High resolution version at http://www-xray.ast.cam.ac.uk/~pg/publications.htm

    The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme

    Full text link
    Our goal is to characterize AGN populations by comparing their X-ray and optical classifications. We present a sample of 99 spectroscopically identified X-ray point sources in the XMM-LSS survey which are significantly detected in the [2-10] keV band, and with more than 80 counts. We performed an X-ray spectral analysis for all of these 99 X-ray sources. Introducing the fourfold point correlation coefficient, we find only a mild correlation between the X-ray and the optical classifications, as up to 30% of the sources have differing X-ray and optical classifications: on one hand, 10% of the type 1 sources present broad emission lines in their optical spectra and strong absorption in the X-rays. These objects are highly luminous AGN lying at high redshift and thus dilution effects are totally ruled out, their discrepant nature being an intrinsic property. Their X-ray luminosities and redshifts distributions are consistent with those of the unabsorbed X-ray sources with broad emission lines. On the other hand, 25/32 are moderate luminosity AGN, which are both unabsorbed in the X-rays and only present narrow emission lines in their optical spectra. The majority of them have an optical spectrum which is representative of the host galaxy. We finally infer that dilution of the AGN by the host galaxy seems to account for their nature. 5/25 have been defined as Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted for by the standard AGN unified scheme, as its predictions are not met for only 12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&

    The XMM-LSS survey: the Class 1 cluster sample over the initial 5 square degrees and its cosmological modelling

    Full text link
    We present a sample of 29 galaxy clusters from the XMM-LSS survey over an area of some 5deg2 out to a redshift of z=1.05. The sample clusters, which represent about half of the X-ray clusters identified in the region, follow well defined X-ray selection criteria and are all spectroscopically confirmed. For all clusters, we provide X-ray luminosities and temperatures as well as masses. The cluster distribution peaks around z=0.3 and T =1.5 keV, half of the objects being groups with a temperature below 2 keV. Our L-T(z) relation points toward self-similar evolution, but does not exclude other physically plausible models. Assuming that cluster scaling laws follow self-similar evolution, our number density estimates up to z=1 are compatible with the predictions of the concordance cosmology and with the findings of previous ROSAT surveys. Our well monitored selection function allowed us to demonstrate that the inclusion of selection effects is essential for the correct determination of the evolution of the L-T relation, which may explain the contradictory results from previous studies. Extensive simulations show that extending the survey area to 10deg2 has the potential to exclude the non-evolution hypothesis, but that constraints on more refined ICM models will probably be limited by the large intrinsic dispersion of the L-T relation. We further demonstrate that increasing the dispersion in the scaling laws increases the number of detectable clusters, hence generating further degeneracy [in addition to sigma8, Omega_m, L(M,z) and T(M,z)] in the cosmological interpretation of the cluster number counts. We provide useful empirical formulae for the cluster mass-flux and mass-count-rate relations as well as a comparison between the XMM-LSS mass sensitivity and that of forthcoming SZ surveys.Comment: Accepted for publication by MNRAS. Full resolution images as well as additional cluster data are available through a dedicated database at http://l3sdb.in2p3.fr:8080/l3sdb
    corecore