303 research outputs found

    Quantifying the impact of vegetation-based metrics on species persistence when choosing offsets for habitat destruction

    Get PDF
    Developers are often required by law to offset environmental impacts through targeted conservation actions. Most offset policies specify metrics for calculating offset requirements, usually by assessing vegetation condition. Despite widespread use, there is little evidence to support the effectiveness of vegetation-based metrics for ensuring biodiversity persistence. We compared long-term impacts of biodiversity offsetting based on area only; vegetation condition only; area x habitat suitability; and condition x habitat suitability in development and restoration simulations for the Hunter Region of New South Wales, Australia. We simulated development and subsequent offsetting through restoration within a virtual landscape, linking simulations to population viability models for 3 species. Habitat gains did not ensure species persistence. No net loss was achieved when performance of offsetting was assessed in terms of amount of habitat restored, but not when outcomes were assessed in terms of persistence. Maintenance of persistence occurred more often when impacts were avoided, giving further support to better enforce the avoidance stage of the mitigation hierarchy. When development affected areas of high habitat quality for species, persistence could not be guaranteed. Therefore, species must be more explicitly accounted for in offsets, rather than just vegetation or habitat alone. Declines due to a failure to account directly for species population dynamics and connectivity overshadowed the benefits delivered by producing large areas of high-quality habitat. Our modeling framework showed that the benefits delivered by offsets are species specific and that simple vegetation-based metrics can give misguided impressions on how well biodiversity offsets achieve no net loss.Peer reviewe

    Transient jets in V617 Sagittarii

    Full text link
    Some of the luminous Compact Binary Supersoft X-Ray sources (CBSS) have shown indications of jets, also called satellites due to their appearance in the spectra. In V Sagittae (V Sge) stars, the galactic counterparts of the CBSS, such features have been reported only for WX Cen. If V Sge stars are indeed the analogs of CBSS, one may expect transient jet emission in other objects of this class. Spectroscopic observations of the V Sge star V617 Sgr have been made, both at high photometric state and at decline. We show that V617 Sgr presents Halpha satellites at high photometric state with velocities of +/-780 km/s. This feature confirms, once more, the CBSS nature of the V Sge stars, however the details of the spectral characteristics also suggest that the two groups of stars display some intrinsic spectroscopic differences, which are likely to be due to a selection effect related to chemical abundance.Comment: Four pages, accepted to be published as a Letter in A&

    African-American Folk Art in Kentucky

    Get PDF
    1998 Kentucky Folk Art Center exhibition catalog of African-American folk art from Kentucky.https://scholarworks.moreheadstate.edu/kfac_exhibition_catalogs/1017/thumbnail.jp

    Dark resonances for ground state transfer of molecular quantum gases

    Full text link
    One possible way to produce ultracold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultracold samples of Cs_2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2> with the rovibrational ground state |v=0,J=0> of the singlet X1Σg+X^1\Sigma_g^+ ground state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2> by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0>.Comment: 7 pages, 4 figure

    Variational Monte Carlo analysis of the Hubbard model with a confining potential: one-dimensional fermionic optical lattice systems

    Full text link
    We investigate the one-dimensional Hubbard model with a confining potential, which may describe cold fermionic atoms trapped in an optical lattice. Combining the variational Monte Carlo simulations with the new stochastic reconfiguration scheme proposed by Sorella, we present an efficient method to systematically treat the ground state properties of the confined system with a site-dependent potential. By taking into account intersite correlations as well as site-dependent on-site correlations, we are able to describe the coexistence of the metallic and Mott insulating regions, which is consistent with other numerical results. Several possible improvements of the trial states are also addressed.Comment: 7 pages, 15 figures; removed unnecessary graphs (p.8-p.32 in the old version are removed

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species

    Intrinsically determined cell death of developing cortical interneurons

    Get PDF
    Cortical inhibitory circuits are formed by GABAergic interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis1-5, is that cortical interneurons are overproduced, and then following their migration into cortex, excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we have characterized the developmental cell death of mouse cortical interneurons in vivo, in vitro, and following transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax- (Bcl-2 associated X-) dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Remarkably, over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by central nervous system (CNS) neurons6-8. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Together, our findings indicate that interneuron cell death is intrinsically determined, either cell-autonomously, or through a population-autonomous competition for survival signals derived from other interneurons

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA
    • …
    corecore