113 research outputs found

    Neodymium and gadolinium extraction from molten fluorides by reduction on a reactive electrode

    Get PDF
    This work describes the electrochemical extraction on a reactive cathode (Cu, Ni) of two lanthanides Ln (Ln = Nd and Gd) from molten LiF-CaF2 medium at 840 and 920°C for Nd and 940°C for Gd. Extraction runs have been performed and the operating conditions (cathodic material and temperature) optimised. The titration of the Nd and Gd concentrations in the melt during extraction used square wave voltammetry. At the end of each run, the residual Ln content was checked by ICP-AES; the extraction efficiencies of the two lanthanides were found to be more than 99.8% on both reactive substrates

    Comparative measurements of total ozone amount and aerosol optical depth during a campaign at El Arenosillo, Huelva, Spain

    Get PDF
    A one week field campaign took place in September 2002 at El Arenosillo, Spain. The objective was to compare total ozone column (<I>TOC</I>) and aerosol optical depth (<I>AOD</I>) from near ultraviolet to near infrared, measured by several Spanish and French instruments. Three spectroradiometers, Brewer, SPUV02, and LICOR, and a CIMEL photometer, have been used simultaneously and the results are presented for four clear days. <I>TOC</I> values are given by the Brewer instrument, and by SPUV02, using two different methods. The ground instruments compare satisfactorily (within 5 DU) and the values are consistent with TOMS data (within 10 DU). <P style="line-height: 20px;"> <I>AOD</I> from the various instruments are compared at seven different wavelengths between 320 nm and 1020 nm: the agreement is very good at 350, 380, and 870 nm; at the four other wavelengths the difference is smaller than 0.03, which can be explained by a relative difference of 4% only between the calibrations of the various instruments. Larger <I>AOD</I> diurnal variations were observed at short wavelengths than in the visible and near infrared; this is most likely due to changes in aerosol size along the day, during the campaign

    Kinetic Theory of Plasmas: Translational Energy

    Get PDF
    In the present contribution, we derive from kinetic theory a unified fluid model for multicomponent plasmas by accounting for the electromagnetic field influence. We deal with a possible thermal nonequilibrium of the translational energy of the particles, neglecting their internal energy and the reactive collisions. Given the strong disparity of mass between the electrons and heavy particles, such as molecules, atoms, and ions, we conduct a dimensional analysis of the Boltzmann equation. We then generalize the Chapman-Enskog method, emphasizing the role of a multiscale perturbation parameter on the collisional operator, the streaming operator, and the collisional invariants of the Boltzmann equation. The system is examined at successive orders of approximation, each of which corresponding to a physical time scale. The multicomponent Navier-Stokes regime is reached for the heavy particles, which follow a hyperbolic scaling, and is coupled to first order drift-diffusion equations for the electrons, which follow a parabolic scaling. The transport coefficients exhibit an anisotropic behavior when the magnetic field is strong enough. We also give a complete description of the Kolesnikov effect, i.e., the crossed contributions to the mass and energy transport fluxes coupling the electrons and heavy particles. Finally, the first and second principles of thermodynamics are proved to be satisfied by deriving a total energy equation and an entropy equation. Moreover, the system of equations is shown to be conservative and the purely convective system hyperbolic, thus leading to a well-defined structure

    Heritability and Artificial Selection on Ambulatory Dispersal Distance in Tetranychus urticae: Effects of Density and Maternal Effects

    Get PDF
    Dispersal distance is understudied although the evolution of dispersal distance affects the distribution of genetic diversity through space. Using the two-spotted spider mite, Tetranychus urticae, we tested the conditions under which dispersal distance could evolve. To this aim, we performed artificial selection based on dispersal distance by choosing 40 individuals (out of 150) that settled furthest from the home patch (high dispersal, HDIS) and 40 individuals that remained close to the home patch (low dispersal, LDIS) with three replicates per treatment. We did not observe a response to selection nor a difference between treatments in life-history traits (fecundity, survival, longevity, and sex-ratio) after ten generations of selection. However, we show that heritability for dispersal distance depends on density. Heritability for dispersal distance was low and non-significant when using the same density as the artificial selection experiments while heritability becomes significant at a lower density. Furthermore, we show that maternal effects may have influenced the dispersal behaviour of the mites. Our results suggest primarily that selection did not work because high density and maternal effects induced phenotypic plasticity for dispersal distance. Density and maternal effects may affect the evolution of dispersal distance and should be incorporated into future theoretical and empirical studies

    A 1-Year Prospective French Nationwide Study of Emergency Hospital Admissions in Children and Adults with Primary Immunodeficiency.

    Get PDF
    PURPOSE: Patients with primary immunodeficiency (PID) are at risk of serious complications. However, data on the incidence and causes of emergency hospital admissions are scarce. The primary objective of the present study was to describe emergency hospital admissions among patients with PID, with a view to identifying "at-risk" patient profiles. METHODS: We performed a prospective observational 12-month multicenter study in France via the CEREDIH network of regional PID reference centers from November 2010 to October 2011. All patients with PIDs requiring emergency hospital admission were included. RESULTS: A total of 200 admissions concerned 137 patients (73 adults and 64 children, 53% of whom had antibody deficiencies). Thirty admissions were reported for 16 hematopoietic stem cell transplantation recipients. When considering the 170 admissions of non-transplant patients, 149 (85%) were related to acute infections (respiratory tract infections and gastrointestinal tract infections in 72 (36%) and 34 (17%) of cases, respectively). Seventy-seven percent of the admissions occurred during winter or spring (December to May). The in-hospital mortality rate was 8.8% (12 patients); death was related to a severe infection in 11 cases (8%) and Epstein-Barr virus-induced lymphoma in 1 case. Patients with a central venous catheter (n = 19, 13.9%) were significantly more hospitalized for an infection (94.7%) than for a non-infectious reason (5.3%) (p = 0.04). CONCLUSION: Our data showed that the annual incidence of emergency hospital admission among patients with PID is 3.4%. The leading cause of emergency hospital admission was an acute infection, and having a central venous catheter was associated with a significantly greater risk of admission for an infectious episode

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore