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Abstract 
 
This work describes the electrochemical extraction on a reactive cathode (Cu, Ni) of two 

lanthanides Ln (Ln = Nd and Gd) from molten LiF-CaF2 medium at 840 and 920°C for Nd 

and 940°C for Gd. Extraction runs have been performed and the operating conditions 

(cathodic material and temperature) optimised. The titration of the Nd and Gd concentrations 

in the melt during extraction used square wave voltammetry. At the end of each run, the 

residual Ln content was checked by ICP-AES; the extraction efficiencies of the two 

lanthanides were found to be more than 99.8% on both reactive substrates. 
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1. Introduction 

 
Since the 1990’s, many research programs concerning molten salt reactors or nuclear fuel 

reprocessing propose an alternative route for the current hydrometallurgical reprocessing 

method. Pyrochemical methods and especially electrochemistry in molten salts have already 

provided promising results [1-7]. One of the key aims of the reprocessing is lanthanide 

extraction from the nuclear waste. Lanthanides produced during the fission reaction are highly 

neutrophagous and would decrease the fission reaction efficiency; furthermore, they have a 

relatively low radioactivity. For these reasons, they must be removed from nuclear waste, 

separated from the radioactive waste with a long half-life and finally extracted for storage.  
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The extraction could be performed in molten fluorides after dissolving the nuclear waste. The 

Ln are extracted in the last step, when all the other fission products have been removed from 

the melt.  

Earlier works performed in our Laboratory have studied the electrochemical behaviour of 

several lanthanides in molten fluoride media [8-10]. In a previous report dedicated to the 

extraction of Nd and Gd from a molten fluoride mixture by electrodeposition, Nourry et al. 

demonstrated that: 

(i) the equilibrium potential of Nd and Gd in the molten electrolyte is too close to that of 

solvent reduction to be able to expect complete extraction of each of the elements [11]. 

(ii) the use of a reactive cathode allows the reduction potential of Nd and Gd ions in alloys 

with the cathodic material, to be shifted towards more anodic values and consequently, 

the theoretical extraction efficiency to be close to 100% for these elements [11].  

The present work details the implementation of the extraction process of lanthanide ions from 

a molten fluoride bath using a specific experimental set up as well as an online titration set up 

to measure the progress of lanthanide depletion from the electrolyte. The goal is to obtain, on 

the laboratory scale, using Cu and Ni electrodes, extraction efficiencies of higher than 99.8% 

in a reasonable time. The rise in temperature seems to be a good way to increase the 

extraction rate since it gives a liquid deposit that rapidly leaves the cathode surface avoiding 

saturation of the intermetallic diffusion layer which would limit the processing rate. The 

results are presented in such a way to allow their extrapolation to the industrial scale.  

 

2. Experimental 

- The experimental cell consisted of a vitreous carbon crucible placed in a cylindrical 

vessel made of refractory steel and closed by a stainless steel lid cooled inside by circulating 

water. The inner part of the walls was protected against fluoride vapours with a graphite liner 
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containing the experimental crucible. The experiments were performed under an inert argon 

atmosphere (U-grade: less than 5 ppm O2), previously dehydrated and deoxygenated using a 

purification cartridge (Air Liquide). The cell was heated in a programmable furnace and the 

temperature was measured using a chromel-alumel thermocouple. A more detailed description 

of the device can be found in previous papers from our laboratory such as [10]. 

- The electrolytic bath consisted of the eutectic LiF/CaF2 (SDS 99.99%) mixture (79/21 

molar ratio). Before use, it was dehydrated by heating under vacuum (3.10-2 mbar) from room 

temperature up to its melting point (762°C) for 72 h. To provide gadolinium and neodymium 

ions, gadolinium fluoride GdF3 (SDS 99.95%) and neodymium fluoride NdF3 (SDS 99.99%) 

pellets were introduced into the bath through a lock chamber under argon gas atmosphere. 

- Electrochemistry: for lanthanide extraction, we used the potentiostatic electrolysis mode 

while the titration of the elements was performed by square wave voltammetry, which we 

proved to be an accurate method [12;13]. Both techniques involved an Autolab PGSTAT 30 

potentiostat/galvanostat controlled using the research software GPES 4.9. 

- Characterisation of reduction products: after electrolysis, the cathode surface was 

examined by scanning electron microscopy (LEO 435 VP) equipped with an EDS probe 

(Oxford INCA 200) for determining the composition of the alloys. Inductively coupled 

plasma – atomic emission spectroscopy (ICP – AES Jobin-Yvon JY24) was used for Nd(III) 

and Gd(III) content determination after sampling the melt. 

 

 - (I) Analytical set-up 

For investigations concerning the electrochemical behaviour of the fluoride bath used for 

the subsequent extractions, the following cell was used: 

Mo (1 mm diameter), Ni (1 mm diameter) or Cu (1.2 mm diameter) were used as working 

electrode; the surface area of the working electrode was determined by measuring its 
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immersion depth in the bath after withdrawal from the cell; the auxiliary electrode was a 

vitreous carbon rod (3 mm diameter) with a large surface area. Potentials were referred to a 

platinum wire (0.5 mm diameter) immersed in the molten electrolyte, acting as a quasi-

reference electrode Pt/PtOx/O2- [14]. 

 

- (II) Extraction set-up 

Compared with the previous set-up, the extraction device needed specific arrangements, 

because of the consequences of long-term experiments causing both significant changes in the 

electrolyte composition and the production of unacceptable gases at the anode (anode effect), 

as detailed below: 

(i) the quantitative extraction from the bath of Ln elements promotes a change of free 

oxide content in the melt, as we know that Ln fluoride reacts with oxide ions to form Ln 

oxifluoride [15], and that the release of Ln from the bath changes the free oxide content in the 

bath, making the use of the platinum quasi-reference electrode unreliable. Consequently, we 

must use a reference electrode insulated from the electrolytic bath: it was a 1-mm diameter 

nickel wire immersed in a mixture of LiF-CaF2-NiF2 (1 mass %), placed in a boron nitride 

basket. This reference electrode was proved to be reliable in molten fluoride baths [16]. 

Moreover, the insulation from the electrolytic bath guarantees the invariability of its potential 

with the change of composition of the electrolyte. 

(ii) the vitreous carbon anode was isolated in a graphite compartment containing a LiCl-

LiF-CaF2 eutectic mixture. The anodic reaction was chlorine release instead of CFx formation; 

besides, electrode compartmentalisation avoided gas release in the cell atmosphere and the 

possibility of reoxidation of Ln-M compounds formed at the cathode.  

(iii) the working electrodes were copper and nickel plates with a large surface area (4 

cm²). 



 6

 

3. Results and discussion 

 3.1. Previous results obtained on the electrochemical behaviour of Nd(III) and 

Gd(III) on reactive electrodes 

Reference [11] dealt with our results on the electrochemical behaviour of Nd(III) and 

Gd(III) on reactive nickel and copper electrodes. The work showed that Nd(III) and Gd(III) 

could be reduced by alloying with the cathodic material (Cu or Ni) at far more anodic 

potentials than on an inert cathode; this so called "depolarization effect", allows the 

theoretical extraction efficiency of these lanthanides to be enhanced up to 100%.  

 Concerning the titration of Ln ions during electrolysis, previous works in our 

laboratory, showed that square wave voltammetry (SWV) is a suitable technique to monitor 

the electroactive species content of molten fluoride media [17;18]. Consequently, as the 

lanthanide ion concentration decreases during extraction runs, SWV can be used to check the 

Nd(III) and Gd(III) contents without sampling the molten solution.  

Figures 1 and 2, which compare the SW voltammograms plotted at 840°C, on inert 

(Mo) and reactive (Ni, Cu) cathodes, for LiF-CaF2-NdF3 and LiF-CaF2-GdF3 systems 

respectively, indicate the occurrence of depolarization. These curves were plotted for several 

Nd(III) and Gd(III) concentrations in order to establish calibration curves (δip = f(C)), for 

each system, reported in Figures 3 and 4. It can be noted that, for both Nd and Gd, these 

calibration curves are composed of two parts depending on the lanthanide concentration: for 

contents higher than around 3 10-3 mol kg-1 (area I), or lower (area II). A Mo electrode can be 

used for SWV lanthanide titration at high Ln concentrations whereas for low contents, Ni or 

Cu electrodes must be used, since in this part no cathodic current is detectable on the Mo 

electrode.  
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In order to validate this titration method, the results from SWV titration were 

compared with ICP analyses after sampling four times during the extraction and once after. 

Good agreements between the respective results validated our online methodology of Ln 

titration. 

 

3.2 Extraction experimental procedure 

The volume of the electrolytic bath was Vsol = 100 cm3. 

Two kinds of working electrodes were introduced in the electrolyte: 

(i) cathode for extraction (CE): it is a plate with a large surface area (Sel = 4 cm²). Note 

that the kinetics vary linearly with the ratio Sel/Vsol and thus all the following results can be 

extrapolated to a larger scale. 

(ii) Working electrode for titration of remaining Ln in the bath (TWE) which was a Cu or 

Ni wire immersed in the bath. 

The experimental set-up is described in the experimental part (§ 2) with a specific 

reference electrode and an anodic compartment. The use of a reference electrode insulated 

from the electrolytic bath insures the stability of the potential reference adapted to long-term 

potentiostatic electrolysis runs, as explained above. So, in the electrolysis part of the article, 

potentials are referred to the NiF2/Ni electrode system.  

Electrolyses were performed in potentiostatic mode and the experimental procedure 

was the following: 

(i) recording a SW voltammogram on a TWE to determine the electrolysis potential; we 

took the potential of the alloying reduction peak presented in Figures 1 and 2. As reported in 

ref [11], the voltammogram peaks correspond to the formation of Ni5Nd, Cu6Nd, Ni5Gd and 

Cu6Gd respectively.  
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(ii) introduction of a EC into the bath for an electrolysis time of around 3 hours to recover 

the alloy; this electrode was then removed from the experimental medium. 

(iii) recording a SW voltammogram on a TWE to measure the level of Ln ions remaining 

in the bath and, accordingly, the progress of the extraction process. 

(iv) these three stages were repeated as a long as any electrochemical signal was detected 

by SW voltammetry. 

 

3.3 Neodymium extraction on copper and nickel 

 3.3.1 Extraction at T = 840°C 

Extraction experiments were performed on CE at T = 840°C. As mentioned above, the 

process was followed by periodically plotting SW voltammograms of the solution. Typical 

SW voltammograms obtained on a Cu (TWE), at increasing extraction durations (t = 0; 2.5; 

15 and 45 h), are presented in Figure 5. A significant decrease of the current density is 

observed on the SWV. It is correlated with the decrease of the Nd(III) ion concentration in the 

bath during the extraction process. We noticed that the current density decreased more rapidly 

at the beginning of electrolysis than after longer times, suggesting an exponential decrease of 

[Ln(III)] versus time. Similar experiments were carried out on a nickel electrode at the same 

temperature. 

 

 

 3.3.2 Extraction efficiency and normalized time 

From the calibration curves presented above for Nd(III) reduction on a Mo, Cu or Ni 

electrode, the measurement of the cathodic peak current density allowed the remaining 

Nd(III) ion concentration in the melt, and consequently the extraction efficiency η, to be 

calculated. η is expressed as below: 
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i

fi

C
CCη −

=  where Ci and Cf are the initial and final Nd(III) concentrations respectively. 

As mentioned above, we assumed that the kinetics is linear with the Sel/Vsol ratio, which leads 

us to define a so-called "normalized time" t* = t (Sel/Vsol), as the time variable of the process. 

Hence, the variation of the extraction efficiency η was plotted versus the normalised 

extraction time in Figure 6 for Cu and Ni electrodes. No significant difference can be 

observed at 840°C between extraction on Cu and Ni electrodes; the bath was sampled at the 

end of the extraction process, and from the ICP-AES titration results, the extraction efficiency 

was determined to be 99.8% in neodymium for both Cu and Ni electrodes. However, the final 

electrolysis times, to reach a cathodic current density approaching zero, are slightly different: 

1.8 h cm-1 and 1.6 h cm-1 for Cu and Ni respectively.  

The inset in Fig. 6, showing the linear relationship between ln(1/(1-η)) and the normalized 

time for the Ni electrode, confirms the exponential form of the Ln content decrease, which 

can be expressed as: 

K t*)exp( [Ln(III)][Ln(III)] −°=           (1) 

where K is a kinetic parameter depending on the rate of both the intermetallic surface reaction 

and solid diffusion. 

 

 3.3.3 Influence of the operating temperature on the extraction duration 

 

Naturally, the kinetic constant must be influenced by the temperature and the physical 

state (solid or liquid) of the cathodic product. 

To examine the temperature effect, several extractions were performed on Ni and Cu 

electrodes at 920°C, using the same procedure as above. The results are compared with those 

obtained above at 840°C in Figures 7 (Ni) and 8 (Cu). 
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(i) Figure 7 does not show a significant difference in the "in situ" measurements of Nd 

extraction efficiency; nevertheless the normalized time of complete extraction at 

920°C was 1.4 h cm-1 instead of 1.6 h cm-1 at 840°C. This slight difference is only due 

to the increase of the kinetic constant K with the temperature; note that the binary 

phase diagram indicates that none of the Ni-Nd alloys are liquid at 920°C [19]. 

(ii) In contrast, the Cu-Nd binary diagram [19] predicts the formation of liquid compounds 

at 920°C. Accordingly, the kinetic process must be enhanced by the continuous 

removal of product from the cathode surface which is therefore continuously renewed, 

avoiding the kinetic limitations of intermetallic diffusion. This assumption is verified 

in Figure 8 where we observe a rapid decrease of the Ln content at 920°C compared to 

840°C. The same final extraction efficiency was obtained in 0.4 h cm-1 at 920°C 

instead of 1.8 h cm-1 at 840°C; this represents a decrease of more than four-fold over 

the whole duration of reprocessing. 

Compared with the case when nickel is used as reactive cathode, such a large decrease in 

reprocessing duration with a small increase in temperature is attributed to the liquid state of 

the cathodic Cu/Nd product continuously leaving the electrode surface and hence, avoiding 

saturation of the solid diffusion layer. This result confirms that in the overall reaction process, 

the limiting step is intermetallic diffusion. 

 

After extraction, cross-sections of the Cu cathodes were observed by SEM (see Figure 

9). The structure of the intermetallic layer is typical of a eutectic mixture formed during the 

electrode cooling stage. This assumption can be verified by examining the Cu-Nd binary 

phase diagram [19] presented in Figure 10. At 920°C, the composition of the liquid phase 

produced was 7 atom % Nd. Then, during the cooling stage, this phase decomposed into Cu 
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and Cu6Nd, as observed in Figure 9, with a global level of Nd in the diffusion layer of 9 

atom %. 

 

3.4 Gadolinium extraction 

 

As the binary phase diagram of Cu-Gd [19] is quite similar to that of Cu-Nd, the 

optimised operating conditions described above for Nd extraction (Cu electrode) were used 

for Gd extraction. As for Nd extraction, the temperature chosen (940°C) was propitious the 

formation of a liquid phase at the copper cathode during the extraction electrolysis. 

Figure 11 presents the variation of the SW voltammograms of the LiF-CaF2-GdF3 

system at 940°C on a copper electrode for different electrolysis times. A rapid decrease of the 

electrochemical signal can be observed up to the complete disappearance of the Gd(III) 

reduction peak. Using the calibration curves in Figure 4, the extraction efficiency of Gd is 

plotted versus the normalised time in Figure 12. This graph is comparable to that of Fig. 8 for 

Nd extraction on copper and the final extraction efficiency obtained in 0.4 h cm‐1 was 

measured by ICP-AES to be at least 99.8%. 

So, the results confirm that both gadolinium and neodymium can be completely 

extracted in a reasonable time from molten fluoride baths. 

 

 
4. Conclusion 

 

Removal of Nd(III) and Gd(III) from molten LiF-CaF2 was performed by electrochemical 

reduction on copper and nickel electrodes. The main conclusions drawn from our results are 

that: 
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(i) the variation of the extraction efficiency obeys an exponential law with the so-called 

normalized time t* = t (Sel/Vsol). Accordingly, the results obtained here can be 

extrapolated to other scales. 

(ii) the complete extraction of lanthanides can be achieved with a reasonable processing 

time. 

(iii) the kinetic process is considerably speeded up by the formation of liquid cathodic 

products. Therefore, the cathodic material and the temperature are critical parameters. 

In the present work, copper as cathode material and the temperature of 920°C 

multiplied the extraction rate more than four-fold, compared to that obtained with Ni 

at 920°C, or at 840°C, with either Cu or Ni,. These results highlight the great 

relevance of intermetallic diffusion in the overall mechanism of extraction of Ln 

elements using a reactive cathode material. 
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Legend of Figures 

 
Figure 1: 

Square Wave Voltammograms of LiF-CaF2-NdF3 (1.5 10-2 mol kg-1) system at 840°C on 

molybdenum, nickel and copper electrodes; f = 9 Hz; Aux. El.: vitreous carbon; Ref. El.: Pt  

 

Figure 2: 

Square Wave Voltammograms of LiF-CaF2-GdF3 (1.7 10-2 mol kg-1) system at 840°C on 

molybdenum and copper electrodes; f = 9 Hz; Aux. El.: vitreous carbon; Ref. El.: Pt  
 

Figure 3: 

Calibration curves for Nd(III) titration on Mo, Ni and Cu electrodes obtained by square wave 

voltammetry at 840°C and 9 Hz. 

 

Figure 4: 

Calibration curves for Gd(III) titration on Mo and Cu electrodes obtained by square wave 

voltammetry at 840°C and 9 Hz. 

 

Figure 5: 

Square wave voltammograms plotted after different electrolysis durations in the LiF-CaF2-

NdF3 system at 840°C; f = 9 Hz; Working El.: Cu, Aux. El.: vitreous carbon, Ref. El.: 

Ni(II)/Ni. 
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Figure 6: 

Variation of the extraction efficiency of Nd at 840°C on copper and nickel electrodes versus 

t*, the normalized electrolysis time. 

Inset: Linear relationship between Ln(1/(1-η)) and t* for Nd extraction on nickel at 840°C. 

 

Figure 7: 

Variation of the extraction efficiency of Nd on nickel electrode at 840°C and 920°C versus 

the normalized electrolysis time. 

 

Figure 8: 

Variation of the extraction efficiency of Nd on copper at 840°C and 920°C versus the 

normalized electrolysis time. 

 

Figure 9: 

SEM micrograph of a copper electrode used for the extraction electrolysis at 920°C. 

 

Figure 10: 

Cu-Nd phase diagram [16]. Cooling path of the Cu/Cu6Nd eutectic 

 

Figure 11: 

Square wave voltammograms plotted after different electrolysis durations in the LiF-CaF2-

GdF3 system at 920°C, 9 Hz; Working electrode: Cu, Aux. El.: vitreous carbon, Ref. El.: 

Ni(II)/Ni. 
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Figure 12: 

Variation of the extraction efficiency of Gd at 940°C on copper electrode versus normalized 

electrolysis time. 
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