123 research outputs found

    Reported co-infection deaths are more common in early adulthood and among similar infections

    Get PDF
    BACKGROUND: Many people have multiple infections at the same time, but the combined contribution of those infections to disease-related mortality is unknown. Registered causes of death offer a unique opportunity to study associations between multiple infections. METHODS: We analysed over 900,000 death certificates that reported infectious causes of death. We tested whether reports of multiple infections (i.e., co-infections) differed across individuals' age or sex. We also tested whether each pair of infections were reported together more or less often than expected by chance, and whether this co-reporting was associated with the number of biological characteristics they had in common. RESULTS: In England and Wales, and the USA, 10 and 6 % respectively of infection-related deaths involved co-infection. Co-infection was reported reported most often in young adults; 30 % of infection-related deaths among those aged 25-44 from the USA, and 20 % of infection-related deaths among those aged 30-39 from England and Wales, reported multiple infections. The proportion of infection-related deaths involving co-infection declined with age more slowly in males than females, to less than 10 % among those aged >65. Most associated pairs of infections co-occurred more often than expected from their frequency of being reported alone (488/683 [71 %] in the USA, 129/233 [55 %] in England and Wales), and tended to share biological characteristics (taxonomy, transmission mode, tropism or timescale). CONCLUSIONS: Age, sex, and biologically similar infections are associated with death from co-infection, and may help indicate patients at risk of severe co-infection

    Prior exposure to stress allows the maintenance of an ecosystem cycle following severe acidification

    Full text link
    Ecosystem processes vary temporally due to environmental fluctuations, such as when variation in solar energy causes diurnal cycles in primary production. This normal variation in ecosystem functioning may be disrupted and even lost if taxa contributing to functioning go extinct due to environmental stress. However, when communities are exposed to the stress at sub-lethal levels over several generations, they may be able to develop community-level stress tolerance via ecological (e.g. species sorting) or evolutionary (e.g. selection for tolerant genotypes) mechanisms and thus avoid the loss of stability, as defined by the resistance of a process. Community tolerance to a novel stressor is expected to increase the resistance of key processes in stressed ecosystems. In freshwater communities we tested whether prolonged prior exposure to an environmental stressor, i.e. acidification, could increase ecosystem stability when the communities were exposed to a subsequent press perturbation of more severe acidification. As a measure of ecosystem stability, we quantified the diurnal variation in dissolved oxygen (DO), and the resistance of the DO cycle and phytoplankton biomass. High-frequency data from oxygen loggers deployed in 12 mesocosms showed that severe acidification with sulfuric acid to pH 3 could cause a temporary (i.e. two-week long) loss of diurnal variation in dissolved oxygen concentration. The loss of diurnal variation was accompanied by a strong reduction in phytoplankton biomass. However, the pre-exposure to acidification for several weeks resulted in the maintenance of the diurnal cycle and higher levels of phytoplankton biomass, though they did not return to as rapidly to pre-exposure functioning as non-exposed mesocosms. These results suggest that ecosystem stability is intrinsically linked to community-wide stress tolerance, and that a history of exposure to the stressor may increase resistance to it, though at the cost of some resilience

    Prior selection prevents the loss of an ecosystem cycle during acidification

    Full text link
    Ecosystem processes vary temporally due to variation in environmental variables, such as when diurnal variation in sunlight causes diurnal cycles in net primary production. This variability can be characterized by its frequency and amplitude, used to define “normal” functioning of an ecosystem. Relatively little research has addressed how normal modes of variability, such as diurnal cycles, are lost or recovered, following anthropogenic stress. We conducted an aquatic mesocosm experiment to test whether prior application of environmental stress, in the form of moderate acidification, affected the diurnal cycle of dissolved oxygen when exposed to severe acidification. High-frequency data from sensor loggers deployed in 12 mesocosms showed that severe acidification caused a temporary loss of diurnal variation in dissolved oxygen concentration. However, pre-exposure to an acidic environment resulted in the persistence of the diurnal cycle. We hypothesize that pre-exposure shifted the community to acid tolerant genotypes and/or species of algae and other photosynthetic organisms. Our findings suggest that the stability of ecosystem cycles is intrinsically liked to the stress tolerance of the species assemblage

    Expert perspectives on global biodiversity loss and its drivers and impacts on people

    Full text link
    Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of biodiversity experts worldwide, we conducted a survey and asked experts to focus on the taxa and freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss interact synergistically) and important demographic and geographic differences in specialists’ perspectives and estimates. Experts from groups that are underrepresented in biodiversity science, including women and those from the Global South, recommended different priorities for conservation solutions, with less emphasis on acquiring new protected areas, and provided higher estimates of biodiversity loss and its impacts. This may in part be because they disproportionately study the most highly threatened taxa and habitats

    Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    Get PDF
    Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production

    Evolutionary winners are ecological losers among oceanic island plants

    Get PDF
    Aim Adaptive radiation, in which successful lineages proliferate by exploiting untapped niche space, provides a popular but potentially misleading characterization of evolution on oceanic islands. Here we analyse the respective roles of members of in situ diversified vs. non-diversified lineages in shaping the main ecosystems of an archipelago to explore the relationship between evolutionary and ecological ‘success’. Location Canary Islands. Taxon Vascular plants. Methods We quantified the abundance/rarity of the native flora according to the geographical range (number of islands where present and geographical extent of the range), habitat breadth (climatic niche) and local abundance (cover) using species distribution data based on 500 × 500 m grid cells and 2000 vegetation inventories located all over the archipelago. Results Species of diversified lineages have significantly smaller geographic ranges, narrower climatic niches and lower local abundances than those of non-diversified lineages. Species rarity increased with the degree of diversification. The diversified Canarian flora is mainly comprised by shrubs. At both archipelagic and island level, the four core ecosystems (Euphorbia scrub, thermophilous woodlands, laurel forest and pine forest) were dominated by non-diversified lineages species, with diversified lineages species providing <25% cover. Species of diversified lineages, although constituting 54% of the archipelagic native flora, were only abundant in two rare ecosystems: high mountain scrub and rock communities. Main conclusions Radiated species, endemic products of in situ speciation, are mostly rare in all three rarity axes and typically do not play an important role in structuring plant communities on the Canaries. The vegetation of the major ecosystem types is dominated by plants representing non-diversified lineages (species that derive from immigration and accumulation), while species of evolutionarily successful lineages are abundant only in marginal habitats and could, therefore, be considered ecological losers. Within this particular oceanic archipelago, and we posit within at least some others, evolutionary success in plants is accomplished predominantly at the margins.publishedVersio

    Fine-Scale Variation in Vector Host Use and Force of Infection Drive Localized Patterns of West Nile Virus Transmission

    Get PDF
    The influence of host diversity on multi-host pathogen transmission and persistence can be confounded by the large number of species and biological interactions that can characterize many transmission systems. For vector-borne pathogens, the composition of host communities has been hypothesized to affect transmission; however, the specific characteristics of host communities that affect transmission remain largely unknown. We tested the hypothesis that vector host use and force of infection (i.e., the summed number of infectious mosquitoes resulting from feeding upon each vertebrate host within a community of hosts), and not simply host diversity or richness, determine local infection rates of West Nile virus (WNV) in mosquito vectors. In suburban Chicago, Illinois, USA, we estimated community force of infection for West Nile virus using data on Culex pipiens mosquito host selection and WNV vertebrate reservoir competence for each host species in multiple residential and semi-natural study sites. We found host community force of infection interacted with avian diversity to influence WNV infection in Culex mosquitoes across the study area. Two avian species, the American robin (Turdus migratorius) and the house sparrow (Passer domesticus), produced 95.8% of the infectious Cx. pipiens mosquitoes and showed a significant positive association with WNV infection in Culex spp. mosquitoes. Therefore, indices of community structure, such as species diversity or richness, may not be reliable indicators of transmission risk at fine spatial scales in vector-borne disease systems. Rather, robust assessment of local transmission risk should incorporate heterogeneity in vector host feeding and variation in vertebrate reservoir competence at the spatial scale of vector-host interaction
    • …
    corecore