18 research outputs found

    THREE· DIMENSIONAL STUDY OF STREAMFLOW DEVELOPING AROUND RADIAL WELLS

    Get PDF
    Based on the completed three dimensional electric analogous studies the following main points can be established: 1. In case of a radial well sited in an extensiye horizontal layer: a) the capacity of well is proportional to the 0.87th power of the thickness of the layer, b) the increase of the number of horizontal pipes with the same total length causes just a slight decrease in discharge, therefore, when determining the number of horizontal pipes, they are not the hydraulic aspects which are decisive, c) limiting the perforation just for the outer half length of the horizontal pipe causes about a 5% reduction in discharge only. 2. In case of a radial well sited near a river-bed. the horizontal pipe in the direction opposite to the river-bed can be omitted without any considerable decrease in discharge. 3. The horizontal pipe reaching under the riverbed considerably increases the discharge, but can result in a rapid colmation. 4. Colmation extends the influence of the well on a longer section of the riyer-bed, that is why its effect to decrease the discharge develops relatively slowly. 5. Enlightening the development of physical, chemical and biological colmation is by all means necessary to forecast and delay the "ageing" of wells

    Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations

    Get PDF
    We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions.The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) TgCH(4) yr(-1) (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 TgCH(4) yr(-1) (2006) to 18.8 TgCH(4) yr(-1) (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) TgCH(4) yr(-1) from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain.Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between -40 and 20% at the aircraft profile sites in France, Hungary and Poland.</p

    Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column

    Get PDF
    We present the first estimate of the global distribution of CO2surface fluxes from 14 stations of the Total Carbon Column Observing Network (TCCON). The evaluation of this inversion is based on 1) comparison with the fluxes from a classical inversion of surface air-sample-measurements, and 2) comparison of CO2mixing ratios calculated from the inverted fluxes with independent aircraft measurements made during the two years analyzed here, 2009 and 2010. The former test shows similar seasonal cycles in the northern hemisphere and consistent regional carbon budgets between inversions from the two datasets, even though the TCCON inversion appears to be less precise than the classical inversion. The latter test confirms that the TCCON inversion has improved the quality (i.e., reduced the uncertainty) of the surface fluxes compared to the assumed or prior fluxes. The consistency between the surface-air-sample-based and the TCCON-based inversions despite remaining flaws in transport models opens the possibility of increased accuracy and robustness of flux inversions based on the combination of both data sources and confirms the usefulness of space-borne monitoring of the CO2 column.It was co-funded by the European Commission under the EU Seventh Research Framework Programme (grants agreements 218793, MACC, and 212196, COCOS

    Precision requirements for space-based XCO2 data

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D10314, doi:10.1029/2006JD007659.Precision requirements are determined for space-based column-averaged CO2 dry air mole fraction (XCO2) data. These requirements result from an assessment of spatial and temporal gradients in XCO2, the relationship between XCO2 precision and surface CO2 flux uncertainties inferred from inversions of the XCO2 data, and the effects of XCO2 biases on the fidelity of CO2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these XCO2 data precision requirements.This work was supported by the Orbiting Carbon Observatory (OCO) project through NASA’s Earth System Science Pathfinder (ESSP) program. SCO and JTR were supported by a NASA IDS grant (NAG5-9462) to JTR

    Global CO(2) fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO(2) total column

    Get PDF
    We present the first estimate of the global distribution of CO(2) surface fluxes from 14 stations of the Total Carbon Column Observing Network (TCCON). The evaluation of this inversion is based on 1) comparison with the fluxes from a classical inversion of surface air-sample-measurements, and 2) comparison of CO(2) mixing ratios calculated from the inverted fluxes with independent aircraft measurements made during the two years analyzed here, 2009 and 2010. The former test shows similar seasonal cycles in the northern hemisphere and consistent regional carbon budgets between inversions from the two datasets, even though the TCCON inversion appears to be less precise than the classical inversion. The latter test confirms that the TCCON inversion has improved the quality (i.e., reduced the uncertainty) of the surface fluxes compared to the assumed or prior fluxes. The consistency between the surface-air-sample-based and the TCCON-based inversions despite remaining flaws in transport models opens the possibility of increased accuracy and robustness of flux inversions based on the combination of both data sources and confirms the usefulness of space-borne monitoring of the CO(2) column. Citation: Chevallier, F., et al. (2011), Global CO(2) fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO(2) total column, Geophys. Res. Lett., 38, L24810, doi:10.1029/2011GL049899

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements : Atmospheric CO 2 anomaly

    No full text
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'

    Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis

    Get PDF
    Tower CO2 flux measurements from 20 European grasslands in the EUROGRASSFLUX data set covering a wide range of environmental and management conditions were analyzed with respect to their ecophysiological characteristics and CO2 exchange (gross primary production, Pg, and ecosystem respiration, Re) using light-response function analysis. Photosynthetically active radiation (Q) and top-soil temperature (Ts) were identified as key factors controlling CO2 exchange between grasslands and the atmosphere at the 30-min scale. A nonrectangular hyperbolic light-response model P(Q) and modified nonrectangular hyperbolic light–temperature-response model P(Q, Ts) proved to be flexible tools for modeling CO2 exchange in the light. At night, it was not possible to establish robust instantaneous relationships between CO2 evolution rate rn and environmental drivers, though under certain conditions, a significant relationship rn=r0 ekTTs was found using observation windows 7–14 days wide. Principal light-response parameters—apparent quantum yield, saturated gross photosynthesis, daytime ecosystem respiration, and gross ecological light-use efficiency, = Pg/Q, display patterns of seasonal dynamics which can be formalized and used for modeling. Maximums of these parameters were found in intensively managed grasslands of Atlantic climate. Extensively used semi-natural grasslands of southern and central Europe have much lower production, respiration, and light-use efficiency, while temperate and mountain grasslands of central Europe ranged between these two extremes. Parameters from light–temperature-response analysis of tower data are in agreement with values obtained using closed chambers and free-air CO2 enrichment. Correlations between light-response and productivity parameters provides the possibility to use the easier to measure parameters to estimate the parameters that are more difficult to measure. Gross primary production (Pg) of European grasslands ranges from 1700 g CO2 m−2 year−1 in dry semi-natural pastures to 6900 g CO2 m−2 year−1 in intensively managed Atlantic grasslands. Ecosystem respiration (Re) is in the range 1800 2400 g CO2 m−2 year−1) to significant release (<−600 g CO2 m−2 year−1), though in 15 out of 19 cases grasslands performed as net CO2 sinks. The carbon source was associated with organic rich soils, grazing, and heat stress. Comparison of Pg, Re, and NEE for tower sites with the same characteristics from previously published papers obtained with other methods did not reveal significant discrepancies. Preliminary results indicate relationships of grassland Pg and Re to macroclimatic factors (precipitation and temperature), but these relationships cannot be reduced to simple monofactorial models

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    No full text
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'

    Bucket-Type Energy Dissipator

    No full text
    corecore