27 research outputs found

    Diel Variations in Survey Catch Rates and Survey Catchability of Spiny Dogfish and their Pelagic Prey in the Northeast US Continental Shelf Large Marine Ecosystem

    Get PDF
    This study examines the potential uncertainty in survey biomass estimates of Spiny Dogfish Squalus acanthias in the Northeast U.S. Continental Shelf Large Marine Ecosystem (NES LME). Diel catch-per-unit-effort (CPUE) estimates are examined from the Northeast Fisheries Science Center bottom trawl surveys conducted during autumn (1963-2009) and spring (1968-2009). Influential environmental variables on survey catchability are identified for Spiny Dogfish life history stages and five pelagic prey species: Butterfish Peprilus triacanthus, Atlantic Herring Clupea harengus, shortfin squid Illex spp., longfin squid Doryteuthis spp., and Atlantic Mackerel Scomber scombrus. Daytime survey catchability was significantly higher than nighttime catchability for most species during autumn and for mature male Spiny Dogfish, shortfin squid, and longfin squid during spring in the NES LME. For most stages and species examined, breakpoint analyses identified significant increases in CPUE in the morning, peak CPUE during the day, and significant declines in CPUE in the late afternoon. Seasonal probabilities of daytime catch were largely driven by solar zenith angle for most species, with stronger trends identified during autumn. Unadjusted CPUE estimates appear to overestimate absolute abundance, with adjustments resulting in reductions in absolute abundance ranging from 41% for Spiny Dogfish to 91% for shortfin and longfin squids. These findings have important implications for Spiny Dogfish regarding estimates of population consumption of key pelagic prey species and their ecological footprint within the NES LME

    Catchability of pelagic trawls for sampling deep-living nekton in the mid-North Atlantic

    Get PDF
    Material collected in summer 2004 from the Mid-Atlantic Ridge between Iceland and the Azores with three pelagic trawls was used to estimate relative catchabilities of common fish, cephalopod, decapod, and jellyfish species. Catchability is defined as the ratio of numbers caught between two trawls, standardized for towed distance. Taxon-specific catchability coefficients were estimated for two large pelagic trawls with graded meshes, using a smaller pelagic trawl with a uniform mesh size as the reference trawl. Two of the trawls were equipped with multiple opening–closing codends that allowed sampling of different depth layers. Generalized linear and mixed models suggest that most of the taxa have catchabilities much lower than expected from the area of opening alone, indicating that only a few species are herded by the large mesh at the mouth of larger trawls. Catchability coefficients across taxa show a very large spread, indicating that the sampled volume for the larger trawls with graded meshes was highly taxon-specific. Part of this variability can be explained by body size and taxonomic group, the latter probably reflecting differences in body form and behaviour. The catchability estimates presented here form the basis for combining data for quantitative analyses of community structure

    Om OECDs Halden Reaktorprosjekt

    No full text
    Hensikten med denne rapporten er å tilveiebringe et vurderingsgrunnlag (fakta) for norsk deltakelse i OECDs Halden reaktorprosjekt (forkortet til HRP). Som vertsland for dette prosjektet er Norge i en spesiell posisjon. Dette er ett av forholdene som skiller foreliggende rapport fra de andre i prosjektet. Rapporten inngår som en delutredning i en større utredning om norsk deltakelse i de store internasjonale forskningsorganisasjonene ESA, CERN, EMBL, ESRF og OECDs HRP

    Detecting Atlantic herring by parametric sonar

    Get PDF
    The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1–6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described
    corecore