32 research outputs found

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions.The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated.Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented.Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    First record of psylliostachys spicata (Plumbaginaceae), confirmation of salvia pratensis (Lamiaceae) from Turkey, and taxonomic status of Salvia ertekinii

    No full text
    Psylliostachys spicata (Plumbaginaceae) is reported as a new genus record for Turkey; an amended species description is given. Bossier's record of Salvia pratensis (Lamiaceae) in Flora Orientalis is confirmed from Turkey. Additionally, the endemic Salvia ertekinii is reduced to a synonym of Salvia pinnata

    PITFALLS OF MAPPING A LARGE TURKISH CONSANGUINEOUS FAMILY WITH VERTICAL

    No full text
    Pitfalls of mapping a large Turkish consanguineous family with vertical monilethrix inheritance: Monilethrix, a rare autosomal dominant disease characterized by hair fragility and follicular hyperkeratosis, is caused by mutations in three type It hair cortex keratins. The human keratin family comprises 54 members, 28 type I and 26 type II. The phenotype shows variable penetrance and results ill hair fragility and patchy dystrophic alopecia. In our study, Monilethrix was diagnosed oil the basis of clinical characteristics and microscopic examination in a family with 11 affected members. Haplotype analysis was performed by three Simple Tandem Repeat markers (STR) and KRT86 gene was sequenced for the identification of the disease causing mutation. In the results of this, autosomal dominant mutation (E402K) in exon 7 of KRT86 gene was identified as a cause of Moniltherix in the large family from Turkey

    Anti-inflammatory and anti-apoptotic effect of nesfatin-1 on liver ischemia-reperfusion injury

    No full text
    PubMed: 327191912-s2.0-85088811547INTRODUCTION: Severe local and systemic tissue injury develop during reperfusion, which is a period during which arterial blood flow and tissue oxygenation are re-established. In this study, we aimed to investigate the anti-inflammatory, antioxidant and protective effects of nesfatin in IR damage developing in liver. MATERIAL AND METHODS: Twenty-four male Wistar-Albino rats were divided to three groups which contained eight rats in all groups. The rats were subjected to 30 minutes of hepatic pedicule occlusion followed by 2h of reperfusion to induce I/R damage. Nesfatin1 (10 µg/ kg) was administered, 30 min prior to ischemia and immediately before the reperfusion period. RESULTS: The findings showed that while the blood levels of AST, ALT and LDH were markedly elevated in the I/R group, they returned to normal levels upon treatment in the Nesfatin group. While IL-1 ?, IL-1?, IL-6, TNF-? and IFN-? levels in blood and tissue were lower after therapy in the Nesfatin group compared to the I/R group, statistically significant decreases were only noted in IL-1?, IL-6, TNF-? and IFN-? levels. TAS levels increased in the treatment group, while upon nesfatin treatment statistically significant decreases were noted in TOS and OSI levels. Histopathological investigations also showed statistically significant decreases in Bax and Caspase-3 staining intensity and the number of stained cells in the Nesfatin group. CONCLUSION: The nesfatin has antioxidant activity and anti-inflammatory effect on improvement of liver functions and histopathological findings in liver ischemia and reperfusion injury. © 2020, Edizioni Luigi Pozzi. All rights reserved

    Pitfalls of mapping a large Turkish consanguineous family with vertical monilethrix inheritance

    No full text
    Pitfalls of mapping a large Turkish consanguineous family with vertical monilethrix inheritance: Monilethrix, a rare autosomal dominant disease characterized by hair fragility and follicular hyperkeratosis, is caused by mutations in three type II hair cortex keratins. The human keratin family comprises 54 members, 28 type I and 26 type II. The phenotype shows variable penetrance and results in hair fragility and patchy dystrophic alopecia. In our study, Monilethrix was diagnosed on the basis of clinical characteristics and microscopic examination in a family with 11 affected members. Haplotype analysis was performed by three Simple Tandem Repeat markers (STR) and KRT86 gene was sequenced for the identification of the disease causing mutation. In the results of this, autosomal dominant mutation (E402K) in exon 7 of KRT86 gene was identified as a cause of Moniltherix in the large family from Turkey
    corecore